Komolého kruhový kužel

Betonový podstavec má tvar pravoúhlého komolého kruhového kužele s výškou 2,5 metru. Průměr horní a dolní základny je 3 stopy a 5 stop. Určitě boční plochu povrchu, celkovou plochu povrchu a objem podstavce.

Výsledek

S3 =  33.836 ft2
S =  60.54 ft2
V =  32.07 ft3

Řešení:

h=2.5 ft D1=3 ft D2=5 ft   r=D1/2=3/2=32=1.5 ft R=D2/2=5/2=52=2.5 ft  l2=h2+(Rr)2 l=h2+(Rr)2=2.52+(2.51.5)22.6926 ft  S3=π l (r+R)=3.1416 2.6926 (1.5+2.5)33.836=33.836 ft2h = 2.5 \ ft \ \\ D_{ 1 } = 3 \ ft \ \\ D_{ 2 } = 5 \ ft \ \\ \ \\ \ \\ r = D_{ 1 }/2 = 3/2 = \dfrac{ 3 }{ 2 } = 1.5 \ ft \ \\ R = D_{ 2 }/2 = 5/2 = \dfrac{ 5 }{ 2 } = 2.5 \ ft \ \\ \ \\ l^2 = h^2 + (R-r)^2 \ \\ l = \sqrt{ h^2 + (R-r)^2 } = \sqrt{ 2.5^2 + (2.5-1.5)^2 } \doteq 2.6926 \ ft \ \\ \ \\ S_{ 3 } = \pi \cdot \ l \cdot \ (r+R) = 3.1416 \cdot \ 2.6926 \cdot \ (1.5+2.5) \doteq 33.836 = 33.836 \ ft^2
S1=π r2=3.1416 1.527.0686 ft2 S2=π R2=3.1416 2.5219.635 ft2  S=S1+S2+S3=7.0686+19.635+33.83660.5395=60.54 ft2S_{ 1 } = \pi \cdot \ r^2 = 3.1416 \cdot \ 1.5^2 \doteq 7.0686 \ ft^2 \ \\ S_{ 2 } = \pi \cdot \ R^2 = 3.1416 \cdot \ 2.5^2 \doteq 19.635 \ ft^2 \ \\ \ \\ S = S_{ 1 }+S_{ 2 }+S_{ 3 } = 7.0686+19.635+33.836 \doteq 60.5395 = 60.54 \ ft^2
V=13 π h (r2+r R+R2)=13 3.1416 2.5 (1.52+1.5 2.5+2.52)32.0704=32.07 ft3V = \dfrac{ 1 }{ 3 } \cdot \ \pi \cdot \ h \cdot \ (r^2 + r \cdot \ R + R^2) = \dfrac{ 1 }{ 3 } \cdot \ 3.1416 \cdot \ 2.5 \cdot \ (1.5^2 + 1.5 \cdot \ 2.5 + 2.5^2) \doteq 32.0704 = 32.07 \ ft^3



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu. Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka. Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

Další podobné příklady a úkoly:

  1. Kužel S2V
    popcorn Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 dm2. Vypočítejte objem tohoto kužele.
  2. Osový řez
    cone2 Osovým řezem kužele, jehož povrch je 114 mm2, je rovnostranný trojúhelník. Vypočítejte objem kužele.
  3. Tětiva
    circleChord Jakou délku d má tětiva kružnice o průměru 69 mm, pokud je vzdálena od středu kružnice 17 mm?
  4. Obdélník
    rectangle_inscribed_circle Obdélník je 29 cm dlouhý a 47 cm široký. Urči poloměr kružnice opsané obdélníku.
  5. Čtyřboký jehlan
    jehlanctyrboky Jaký je povrch pravidelného čtyřbokého jehlanu, když je podstavná hrana a=16 a výška v=19?
  6. Záhrada
    garden_1 Rozloha čtvercové zahrady tvoří 6/8 rozlohy zahrady tvaru trojúhelníku se stranami 136 m 85 m a 85 m. Kolik metrů pletiva potřebuji na oplocení čtvercové zahrady?
  7. Lichoběžník MO
    right_trapezium Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé. Vypočítejte obvod a obsah takéhoto lichobežníka.
  8. Pravoúhlý Δ
    ruler Pravoúhlý trojúhelník ma délku odvěsny 12 cm a délku přepony 13 cm. Vypočítejte výšku trojúhelníku.
  9. Řeka
    kongo_river Vypočítejte o kolik promile průměrně klesá řeka Vltava, pokud na úseku dlouhém 873 km teče voda z výšky 1343 m nad mořem na výšku 198 m nad mořem.
  10. Goniometrické funkce
    trigonom Pro pravoúhlý trojúhelník plati: ? Určitě hodnoty s, c aby platilo: ? ?
  11. Kvádr
    cuboid Kvádr s hranou a=7 cm a tělesových úhlopříčkou u=33 cm má objem V=3136 cm3. Vypočítejte velikosti ostatních hran.
  12. Trojúhelník SUS
    triangle_iron Vypočítejte plochu a obvod trojúhelníku, pokud jeho dvě strany jsou dlouhé 88 dm a 88 dm a úhel nimi sevřený je 170°.
  13. Úloha o pohybu
    peleton Z křižovatky dvou kolmých silnic vyjeli současně dva cyklisté (každý jinou silnicí) jeden jede průměrnou rychlostí 19 km/h, druhý průměrnou rychlostí 19 km/h. Určete jejich vzájemnou vzdálenost po 45 minutách jízdy.
  14. Čtverec
    square_1 Body A[-9,6] a B[-5,-3] jsou sousedními vrcholy čtverce ABCD. Vypočítejte obsah čtverce ABCD.
  15. Krychle
    squares_2 Jedna krychle je kouli vepsána a druhá opsána. Vypočítejte rozdíl objemů v obou krychlích, pokud rozdíl jejich povrchů je 231 cm2.
  16. Zkratka
    direct_route Představte si, že jdete ke kamarádovi po rovné cestě. Ta cesta má délku 350 metrů. Potom zahnete doprava a půjdete dalších 1790 metrů a jste u kamaráda. Otázka zní, o kolik bude kratší cesta, když půjdete přímou cestou přes pole?
  17. Kosočtverec
    rhombus Vypočítejte obvod a obsah kosočtverce, jehož úhlopříčky jsou dlouhé 16 cm a 40 cm.