Koza

Je louka tvaru kruhu r=34 m. Jak dlouhý musí být provaz na uvázání kozy ke kolíku na obvodu louky, aby spásla jen polovinu louky?

Správný výsledek:

x =  39,4 m

Řešení:

S1+S2=12S S=πr2 S1=12x2(αsinα) S2=12r2((2π2α)sin(2π2α))  x=2rcos(α/2)   α=tanαπ2cosα    x=1.158728434=39.4 m



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 3 komentáře:
#
Www
nelinearni rovnice/funcke ako bic

#
Alev
To je sice asi správné numerické vyřešení (nekontroloval jsem to) ale chtělo by to vyjádřit explicitně pro libovolný průměr.

#
Dr Math
ne vsechno se da vyresit jako na zakladce... peknym vzorcem... priklady ze zivota konci i rovnicemi, ktere lze resit pouze numericky... bohuzel realne problemy konci zvycejne takhle....

avatar









Tipy na související online kalkulačky
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Další podobné příklady a úkoly:

  • Rostoucí funcke
    lines Která z funkci je rostoucí? a) y = 2-x b) y = 20 c) y = (x + 2). (-5) d) y = x-2
  • Tajný poklad
    max_cylinder_pyramid Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
  • Cukrářka 2
    cukrrka Cukrářka potřebuje z cukrářské hmoty ve tvaru koule o poloměru 25cm vyřezat ozdobu ve tvaru kužele. Určete poloměr podstavy ozdoby a (a výšku h) tak, aby se na výrobu ozdoby použilo co nejvíce hmoty.
  • Bazén
    basen_5 Zjistěte rozměry otevřeného bazénu se čtvercovým dnem o objemu 32 m3 tak, aby na vyzdění jeho stěn a dna bylo třeba nejmenší množství materiálu.
  • Kladné číslo
    derive_1 Najděte takové kladné číslo, aby součet tohoto čísla a jeho převrácené hodnoty byl minimální.
  • Papír
    box Tvrdý papír ve tvaru obdélníku má rozměry 60 cm a 28 cm. V rozích se odstřihnou stejné čtverce a zbytek se ohne do tvaru otevřené krabice. Jak dlouhá musí být strana odříznutých čtverců, aby objem krabice byl největší?
  • Koule v kuželu
    sphere-in-cone Kouli o poloměru 3 cm opište kužel minimálního objemu. Určete jeho rozměry.
  • Kužel
    diag22 Do rotačního kužele o rozměrech r = 8 cm, v = 8 cm vepište válec maximálního objemu tak, aby osa válce byla kolmá na osu kužele. Určete rozměry válce.
  • Koule a kužel
    cone_in_sphere Do koule o poloměru G = 36 cm vepište kužel s největším objemem. Jaký je tento objem a jaké jsou rozměry kužele?
  • Derivace
    fx Existuje funkce, jejíž derivace je tatéž funkce?
  • Vrh
    rocket Těleso bylo vrženo svisle vzhůru rychlostí v0 = 79 m/s. Výši tělesa v závislosti na čase popisuje rovnice ?. Jakou maximální výši dosáhne těleso?
  • Socha
    michelangelo Na podstavci vysokém 4 m stojí socha vysoká 2,7 metrů. V jaké vzdálenosti od sochy se musí pozorovatel postavit, aby ji viděl v největším zorném úhlu? Vzdálenost oka pozorovatele od země je 1,7 m.
  • Žebřík
    rebrik_4 4m žebřík se dotýká krychle 1mx1m postavené u zdi. Jak vysoko na zdi dosáhne?
  • Simplexova metóda
    tv Řetězec obchodních domů plánuje investovat do televizní reklamy až 24 000 Eur. Všechny reklamní spoty budou umístěny na televizní stanici, na níž odvysílání 30 sekundového spotu stojí 1000 Eur a sleduje ho 14 000 potenciálních zákazníků, během prime týmu
  • Nádoba tvaru válce
    valec2_6 Nahoru otevřená nádoba tvaru válce má objem V = 3140 cm3. Určitě rozměry válce (r, v) tak, aby na vytvoření této nádoby se minulo nejméně materiálu.
  • Derivační problém
    derive Součet dvou čísel je 12. Najděte tato čísla, jestliže: a) Součet jejich třetích mocnin je minimální. b) Součin jednoho s třetí mocninou druhého je maximální. c) Obě jsou kladná a součin jednoho s druhou mocninou druhého je maximální.
  • Střelec 4
    terc Střelec střílí do terče, přičemž předpokládáme, že jednotlivé výstřely jsou navzájem nezávislé a pravděpodobnost zásahu je u každého z nich 0,2. Střelec střílí tak dlouho, dokud poprvé terč nezasáhne, poté střelbu ukončí. (a) Jaký je nejpravděpodobnější p