Povrch válce

Vypočtěte povrch válce, je-li jeho objem 45 litrů a obvod podstavy je trojnásobkem výšky.

Výsledek

S =  70.053 dm2

Řešení:

V=45 l=πr2h 2πr=3h h=23πr V=23π2r3 r=3V2π23=1.9 dm h=23πr=3.98 dm S=2πr2+2πrh=2π1.92+2π1.93.98=70.053 dm2V = 45 \ l = \pi r^2 h \ \\ 2 \pi r = 3 h \ \\ h = \dfrac23 \pi r \ \\ V = \dfrac23 \pi^2r^3 \ \\ r = \sqrt[3]{\dfrac{ 3V}{ 2 \pi^2}} = 1.9 \ dm \ \\ h = \dfrac23 \pi r = 3.98 \ dm \ \\ S = 2 \pi r^2 + 2\pi r h = 2 \pi \cdot 1.9^2 + 2\pi \cdot 1.9 \cdot 3.98 = 70.053 \ dm^2







Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Víte objem a jednotku objemu a chcete proměnit jednotku objemu?

Další podobné příklady a úkoly:

  1. Osový řez
    cone2 Osovým řezem kužele, jehož povrch je 114 mm2, je rovnostranný trojúhelník. Vypočítejte objem kužele.
  2. Čtyřboký jehlan 9
    jehlan Je dán pravidelný čtyřboký jehlan. Délka hrany podstavy a = 6,5 cm, boční hrana s = 7,5 cm. Vypočítejte Objem a obsah pláště.
  3. Kužel
    cone-blue Vypočítej objem a povrch kužele, pokud průměr podstavy je d = 17 cm a strana kužele svírá s rovinou podstavy úhel 38°48'.
  4. Krychle
    squares_2 Jedna krychle je kouli vepsána a druhá opsána. Vypočítejte rozdíl objemů v obou krychlích, pokud rozdíl jejich povrchů je 231 cm2.
  5. Kužel S2V
    popcorn Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 dm2. Vypočítejte objem tohoto kužele.
  6. Zvětšení krychle
    krychle_1 O kolik procent se zvětší objem a povrch krychle, zvětšíme-li její hranu o 68%.
  7. Válce
    cylinders Pláště dvou válců vznikly svinutím téhož obdélníku o rozměrech 12 mm a 19 mm. Který z válců má větší objem a o kolik?
  8. Hromada písku
    sandpile_1 Auto vysypalo písek do přibližně kuželového tvaru. Dělníci chtěli zjistit objem (množství písku) a proto změřili obvod podstavy a délku obou stran kužele (přes vrchol). Jaký je objem pískového kužele, pokud obvod podstavy je 5 metrů a délka dvou stran d
  9. Tajný poklad
    max_cylinder_pyramid Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
  10. Mimozemská loď
    cube_in_sphere Mimozemská loď má tvar koule o poloměru r = 3000m a její posádka potřebuje lodí odvézt nasbíraný výzkumný materiál v boxu ve tvaru kvádru se čtvercovou podstavou. Určete délku podstavy a (a výšku h) tak, aby měl box největší možný objem.
  11. Bazén
    praded Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. Propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hrano
  12. Polokoule 2
    naklon_koule Nádoba tvaru polokoule je zcela naplněna vodou. Jaký poloměr má nádoba, když z ní při naklonění o 30 stupňů vyteče 10 l vody?
  13. Komolý kužel
    cone-frustrum Pokud je nádrž zcela plná, nádrž obsahuje 28,54 m3 vody. Průměr horní základny je 3,5 m, zatímco na spodní základně je 2,5 m. Stanovte výšku, pokud je nádrž ve tvaru komolého kužele pravoúhlého kruhového kužele.
  14. Krychle
    cube_in_sphere_1 Krychle je vepsána do koule o objemu 4728 cm3. Určete délku hrany krychle.
  15. Kvádr
    cuboid Kvádr s hranou a=12 cm a tělesových úhlopříčkou u=38 cm má objem V=7200 cm3. Vypočítejte velikosti ostatních hran.
  16. Proměna kvádru
    cube Kvádr o rozměrech 10 cm, 17 cm a 17 cm se má přeměnit na kostku se stejným objemem. Jaká je její hrana?
  17. Kulová úseč
    kulova_usec Z koule o poloměru 18 byla odříznuta kulová úseč. Její výška je 12. Jakou část objemu koule tvoří objem úseče?