Vláček

Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakem. Vlak měl tři vagony a v každém se vezla právě tři čísla. Číslo 1 se vezlo v prvním vagonu a v posledním vagonu byla všechna čísla lichá. Průvodčí cestou spočítal součet čísel v prvním, druhém i posledním vagonu a pokaždé mu vyšel stejný součet. Určete jak mohla být čísla do vagonu rozdělena. Kolik má úloha řešení?

Správný výsledek:

n =  1

Řešení:

[168]:[249]:[357]



Budeme velmi rádi, pokud náhodou najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 1 komentář:
#
Karel
Nápověda. Zjistěte, jaký byl součet čísel v každém vagónu.

Součet všech čísel ve všech vagónech je
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45.
Součet čísel v každém vagónu tedy byl 45 : 3 = 15.
Ve třetím vagónu se vezla tři lichá čísla jiná než 1, z nich lze získat součet 15 pouze
jako 3 + 5 + 7. V prvním vagóně se vedle 1 vezla ještě některá dvě čísla z 2, 4, 6, 8, 9.
Z těchto čísel lze získat součet 15 pouze jako 1 + 6 + 8. Do druhého vagónu tak zbývají
čísla 2, 4, 9 (pro kontrolu 2 + 4 + 9 = 15).
Úloha má jediné řešení: v prvním vagónu se vezla čísla 1, 6, 8, ve druhém vagónu 2,
4, 9, ve třetím vagónu 3, 5, 7.
Jiné řešení. I bez určení součtu čísel v každém vagónu lze na uvedené řešení přijít zkou-
šením. Nejméně možností je v posledním vagónu, kde se vezla některá tři čísla z 3, 5, 7, 9:
• Trojice 5, 7, 9 má součet 21 a stejný součet by musel být i v prvním vagónu. Ze dvou
zbylých čísel a 1 však lze získat nejvýše 1 + 6 + 8 = 15, což nevyhovuje.
• Trojice 3, 7, 9 má součet 19; v prvním vagónu by pak mohl být součet nejvýše 1 + 6 +
+ 8 = 15, což také nevyhovuje.
• Trojice 3, 5, 9 má součet 17; v prvním vagónu by pak mohl být součet nejvýše 1 + 7 +
+ 8 = 16, což také nevyhovuje.
• Trojice 3, 5, 7 má součet 15; v prvním vagónu by pak mohla být trojice 1, 6, 8 se
součtem 15, což je vyhovující možnost.
Do druhého vagónu tak zbývají čísla 2, 4, 9, která mají taktéž součet 15.

avatar









Další podobné příklady a úkoly:

  • Kronika
    books_8 Od začátku roku si žáci 4. b psali kroniku. Bylo v ní všechno, co spolu zažili, a velmi jim na ní záleželo. Jenže jednoho dne se kronika ztratila. V pondelí zůstalo po vyučování ve třídě pět žáků, aby všechno prohledali. Hledali všude, dokonce uklidili i
  • Krkavci
    krkavec V pohádce o sedmero krkavcích bylo sedm bratrů, z nichž každý se narodil přesně o 2,0 roků po předchozím. Když byl nejstarší z bratrů právě 7-krát starší než nejmladší matka všechny zaklela. Kolik let bylo sedmero bratrům krkavcům, když je jejich matka za
  • Čísla
    ten Určete počet všech přirozených čísel menších než 4183444, pokud každé je současně dělitelné 29, 7, 17. Jaký je jejich součet?
  • Opice
    monkey Do studny hluboké 29 metrů spadla opice. Každý den se jí daří vyškrábat se 3 metry, v noci však spadne zpět o 2 metry. Na který den se opice dostane ze studny?
  • Z5–I–4 MO 2018
    stol_2 V klubovně byly jen židle a stůl. Každá židle měla čtyři nohy, stůl byl trojnohý. Do klubovny přišli skauti. Každý si sedl na svou židli, dvě židle zůstaly neobsazené a počet nohou v místnosti byl 101. Kolik židlí bylo v klubovně?
  • Úsečky
    segments Úsečky délek 67 cm a 3,1 dm máme rozdělit na stejné díly tak, aby jejich délka v centimetrech byla vyjádřena celým číslem. Kolika způsoby je můžeme dělit?
  • Obdélníky
    rectangles2_2 Vystřihl jsem si dva obdélníky s obsahy 54 cm², 90 cm². Jejich strany jsou vyjádřené celými čísly v centimetrech. Pokud tyto obdélníky přiložím k sobě, dostanu obdélník s obsahem 144 cm². Jaké rozměry může mít tento velký obdélník? Napiš všechny možnosti.
  • Čtvercova sít
    sit Čtvercova síť se skladá ze čtverců se stranou delky 1cm. Narysujte do ní alespoň tři různe obrazce takové, aby každý měl obsah 6cm2 a obvod 12cm a aby jejich strany splývaly s přímkami síťe.
  • Z5–I–1 MO 2017
    rohliky_2 Honzík dostal kapesné a chce si za něj koupit něco dobrého. Kdyby si koupil čtyři koláče. Zbylo by mu 5kč. Kdyby si chtěl koupit pět koláčů, chybělo by mu 6kč. Kdyby si koupil dva koláče a tři koblihy, utratil by celé kapesné beze zbytku. Kolik stoji jedn
  • Kroužek v škole
    venn 27 žáků navštěvuje nějaký kroužek, taneční kroužek navštěvuje 14 žáků, sportovní 21 žáků a dramatický 16 žáků. Taneční a sportovní navštěvuje 9 žáků, taneční a dramatický 6 žáků, sportovní a dramatický 11 žáků. Kolik žáků navštěvuje všechny 3 kroužky?
  • Centy
    cents_1 Julka má o 3 centy více než Hugo. Celkem maji 27 centů. Kolik centů má Julka a kolik Hugo?
  • Peníze a obchod
    img-thing Peter zaplatil v obchodě o 3 eura více, než je polovina částky, kterou měl při příchodu do obchodu. Při odchodu mu zůstalo 10 eur. Kolik eur měl při příchodu do obchodu?
  • Lentilka
    lentilky.JPG Lentilka udělala 31 palačinek. 8 nenaplnila ničím, 14 palačinek naplnila jahodovým džemem, 16 naplnila tvarohem. a) Kolik udělala Lentilka jahodovo-tvarohových palačinek? Maksík snědl 4 jahodovo-tvarohové a všechny čistě jahodové palačinky. Mikulaš snědl
  • Králici
    kralici V králíkárně je 48 strakatých králíků. Hnědých je o 23 méně než strakatých a bílých je 8-krát méně než strakatých. Kolik je v králíkárně králíků?
  • Převod
    ozubene_kolesa Dvě ozubená kola, zapadající do sebe, mají převod 2:3. Středy odidvoch kol jsou od sebe vzdáleny 82 cm. Jaké poloměry mají kola?
  • Racek
    cajka Uměle vytvořený ostrov ve tvaru kruhu o poloměru 50 m je porostlý zelení. Jedinou výjimku tvoří přistávací plocha pro helikoptéry ve tvaru obdélníku o rozměrech 15 m a 8 m. Jaká je pravděpodobnost, že letící racek (bez použití smyslů, očí, ......) sesedne
  • Koza v trojke
    goat__wolf_and_cabbage Je jeden převozník koho má prvního převézt je tam koza, zeli a vlk a nikomu se nesmí nic stát. Kolik plaveb převozník spraví?