Bazén

Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. Propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hranol vysoký jako blízký televizní vysílač a pak by byl naplněný až po okraj. Dodáváme, že kdybychom chtěli uplavat vzdálenost stejnou, jako je výška vysílače, museli bychom přeplavat bud osm délek, nebo patnáct šířek bazénu. Jak vysoký je vysílač?

Výsledek

x =  216 m

Řešení:

abc=699.84 c2x=699.84 x=8a x=15b  cx2/120=699.84 c(699.84/c2)2/120=699.84 c=699.84/1203=1.8 m x=699.84/c2=216  m   a=x/8=27 m b=x/15=14.4 m abc = 699.84 \ \\ c^2 x = 699.84 \ \\ x = 8a \ \\ x = 15b \ \\ \ \\ c x^2/120 = 699.84 \ \\ c (699.84/c^2)^2/120 = 699.84 \ \\ c = \sqrt[3]{ 699.84/120 } = 1.8 \ m \ \\ x = 699.84/ c^2 = 216 \ \text { m } \ \\ \ \\ a = x/8 = 27\ m \ \\ b = x/ 15 = 14.4 \ m \ \\







Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 15 komentářů:
#
Žák
Dobrý den,mohli by jste zveřejnit postup,proč jste takto postupovali ?

#
Www
Intuice, ze zadani jsem si napsal prvni 4 radky - to jsou rovnice ktere primo vyplyvaji se zadani. Avsak jen tak potom se vyresit nedaji, jsou 4 nezname a jsou v soucine, t.j. kubicka rovnice. To se bezne tam clovek domota a konci. Treba vyseparovat aspon jednu neznamou, tu to slo - c = hlouba bazenu.

Ocekavame ze nekto lepsi reseni jeste prohledne a dukladne zdokumentuje, popise vsechny detaily zde ;)

#
Žák
Děkuji :) a jak jste přišli na toto :  cx2/120=699.84    a toto   c=699.84/120−−−−−−−−−√3=1.8 m ? Vůbec si nejsem jistý

4 roky  1 Like
#
Www
z 3. a 4. rovnice vyjadris a,b a dosadis do prvni. Potom v dalsim kroku jsem jeste za x dosadil x vyjadrene z 2. rovnice. tym vznikla rovnice tretiho stupne s neznamou "c".

4 roky  2 Likes
#
Žák
Omlouvám se,ale pořád nechápu jak se získalo toto cx2/120=699.84,nechápu to cx2,vždyt sruhá mocnina byla nad c..a tady  c=699.84/120−−−−−−−−−√3=1.8 m nechápu tu odmocninu :(

#
Www
a b c = 699.84
x/8*x/15 c = 699.84
c x2 /120 = 699.84 , samozrejme ze stale plati i ta predchozi rovnice ze c2 x = 699.84

4 roky  1 Like
#
Žák
Dobrý den

#
Momo
Dobrý den, smím se zeptat, jak je možné, že se z 6998,4 stalo 699,84?

#
Www
6998,4 hektolitrů je 699,84 m3

#
Bela
Dobrý den, proč se 15 násobilo 8, a potom se tím dělilo cx2.

#
Www
prvni 4 rovnice vyplyvaji ze zadani. Jejich reseni je kopec intuice a spekulovani, klidne je reste jako kto vi. Schodne reseni je najprv vypoctet c, kedze se da osamostatnit. Kedze 2 rovnice jsou de facto kubicke (nezname v soucini), obecni reseni 4 rovnic o 4 neznamych asi nikto nevynalezl.

#
Honza
V zadání je uváděna PRŮMĚRNÁ hloubka bazénu, nikoli výška hladiny vody. To znamená, že bazén nemusí být kvádr. Z tohoto hlediska mi zadání příjde nejednoznačné.

#
Honza
Jinak řešení těch rovnic není žádný problém. Nejednoušeji tak, že z 3. rovnice se vyjádří "a", ze čtvrté rovnice "b"a obě dvě se dosadí do první rovnice, která se položí  = 2. rovnici. Po úpravě výjde, že x=120c. Vyjádřením "x" z druhé rovnice a dosazením "c"do ní výjde výsledek x=216m.

#
Žák
Dobry den, chtel bych se jenom zeptat, odkud se vzala rovnice c=699.84/120−−−−−−−−−√3=1.8 m.

#
Randomizer
Mám ten dojem, že cx2/120 vzniklo z postupu... abc=c2x ab=cx x/ab=c c=x/120 699.84=cx2/120
to X se vynasobi x protoze jsme pridali x

ale je to jenom můj dojem... a nedokazu vysvetlit jak sem k tomu prisel

avatar









Máte soustavu rovnic a hledáte kalkulačku soustavy lineárních rovnic? Chcete proměnit jednotku délky? Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu.

Další podobné příklady a úkoly:

  1. Bazén
    swimming-pool Bazén má rozměry dna 9 m a 16 m a výšku 152 cm. Kolik hektolitrů vody je v něm, pokud voda sahá 19 cm pod horní okraj bazénu?
  2. Káďe
    nadrz Káď tvaru kvádru je vodou naplněna po okraj. Vnější rozměry jsou 95 cm, 120 cm a 60 cm. Tloušťka všech stěn i dna je 5 cm. Kolik litrů vody se vešlo do kádě?
  3. Kvádr - úhlopříčka
    kvadr_diagonal Vypočítej objem kvádru, jehož tělesova úhlopříčka u se rovná 6.1cm a obdélníková postava má rozměry 3.2cm a 2.4cm
  4. Tajný poklad
    max_cylinder_pyramid Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
  5. Přeřízneme jehlan
    jehlan_4b_obdelnik Pravidelný čtyřboký jehlan má výšku 40 cm a stranu podstavy 21 cm. Jehlan přeřízneme v poloviční výšce. Jak velký objem budou mít obě části?
  6. Čtyřboký jehlan 9
    jehlan Je dán pravidelný čtyřboký jehlan. Délka hrany podstavy a = 6,5 cm, boční hrana s = 7,5 cm. Vypočítejte Objem a obsah pláště.
  7. Mimozemská loď
    cube_in_sphere Mimozemská loď má tvar koule o poloměru r = 3000m a její posádka potřebuje lodí odvézt nasbíraný výzkumný materiál v boxu ve tvaru kvádru se čtvercovou podstavou. Určete délku podstavy a (a výšku h) tak, aby měl box největší možný objem.
  8. Dutá koule 4
    sphere_Nickel Dutá niklová koule má vnější průměr 0,4 metru a vnitřní průměr 0,3 metru. Určete její hmotnost, pokud je hustota niklu 9000 kg/m3.
  9. Tři sklenice
    skleniceRGB Tři sklenice různé barvy mají různý objem. Červená 1,5 litrová je naplněna ze 2/5, modrá o objemu 3/4 litru je naplněna z 1/3 a třetí zelená o objemu 1,2 litru je prázdná. Z červené sklenice nalejeme do zelené 1/4 obsahu a z modré nalejeme do zelené 2/5 o
  10. Krychle
    cube_in_sphere_1 Krychle je vepsána do koule o objemu 4728 cm3. Určete délku hrany krychle.
  11. Osový řez
    cone2 Osovým řezem kužele, jehož povrch je 114 mm2, je rovnostranný trojúhelník. Vypočítejte objem kužele.
  12. Kvádr
    cuboid_1 Kvádr má povrch 1577 cm2, délky jeho hran jsou v poměru 4:1:2. Vypočítej objem kvádru.
  13. Kvádr
    cuboid Kvádr s hranou a=12 cm a tělesových úhlopříčkou u=38 cm má objem V=7200 cm3. Vypočítejte velikosti ostatních hran.
  14. Krychle
    squares_2 Jedna krychle je kouli vepsána a druhá opsána. Vypočítejte rozdíl objemů v obou krychlích, pokud rozdíl jejich povrchů je 231 cm2.
  15. Proměna kvádru
    cube Kvádr o rozměrech 10 cm, 17 cm a 17 cm se má přeměnit na kostku se stejným objemem. Jaká je její hrana?
  16. Kužel S2V
    popcorn Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 dm2. Vypočítejte objem tohoto kužele.
  17. Terezka
    cube Krychle má obsah podstavy 289 mm2. Vypočítej její délku hrany, objem a povrh plášte.