Vnější dotyk

Sestrojte kružnice k1 ( S1; 1,5 cm), k2 ( S2 ; 2 cm) a k3 ( S3 ; 2,5 cm ), tak aby měly vždy dvě vnější dotyk. Vypočtěte obvod trojúhelníka S1S2S3.

Výsledek

o =  12 cm

Řešení:

o=2 (1.5+2+2.5)=12  cm o=2 \cdot \ (1.5+2+2.5) = 12 \ \text { cm }







Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:

Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

Další podobné příklady a úkoly:

  1. Sestrojte 5
    kosostvorec Sestrojte kosočtverec ABCD tak, aby jeho úhlopříčka BD měla velikost 8 cm a vzdálenost vrcholu B od primky AD byla 5 cm. Určete všechny možnosti
  2. Dve tětivy
    tetivy Vypočítejte délku tětivy AB a k ní kolmé tětivy BC, pokud tětiva AB je od středu kružnice k vzdálená 4 cm a tětiva BC má vzdálenost 8 cm.
  3. Tětiva
    circleChord Jakou délku d má tětiva kružnice o průměru 69 mm, pokud je vzdálena od středu kružnice 17 mm?
  4. Obdélník
    rectangle_inscribed_circle Obdélník je 29 cm dlouhý a 47 cm široký. Urči poloměr kružnice opsané obdélníku.
  5. Lichoběžník MO
    right_trapezium Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé. Vypočítejte obvod a obsah takéhoto lichobežníka.
  6. Záhrada
    garden_1 Rozloha čtvercové zahrady tvoří 6/8 rozlohy zahrady tvaru trojúhelníku se stranami 136 m 85 m a 85 m. Kolik metrů pletiva potřebuji na oplocení čtvercové zahrady?
  7. Z8–I–5 MO 2019
    mo_z8_trojuhelniky Pro osm navzájem různých bodů jako na obrázku platí, že body C, D, E leží na přímce rovnoběžné s přímkou AB, F je středem úsečky AD, G je středem úsečky AC a H je průsečíkem přímek AC a BE. Obsah trojúhelníku BCG je 12 cm2 a obsah čtyřúhelníku DFHG je 8
  8. Tajný poklad
    max_cylinder_pyramid Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
  9. Přeřízneme jehlan
    jehlan_4b_obdelnik Pravidelný čtyřboký jehlan má výšku 40 cm a stranu podstavy 21 cm. Jehlan přeřízneme v poloviční výšce. Jak velký objem budou mít obě části?
  10. Sádrový
    pyramid_4s Sádrový odlitek má tvar pravidelného čtyřbokého jehlanu. Plášť je tvořen čtyřmi rovnostrannými trojúhelníky se stranou 5 m. Vypočítejte objem a povrch.
  11. Dvě těžnice
    triangle_rt_taznice Pravoúhlý trojúhelník, úhel C je 90 stupňů. Znám těžnici ta = 8 cm a těžnici tb = 12 cm. .. Jak spočítat délku stran?
  12. Stěnové úhlopříčky
    cuboid_1 Pokud jsou stěnové úhlopříčky kvádru x, y a z (diagonály), pak najděte objem kvádru. Vyřešte pro x = 1.3, y = 2, z = 1.4
  13. Uhlopříčky
    diagonals_prism Vypočítejte délky stěnových a tělesových úhlopříček kvádru o rozměrech hran 0,5 m, 1 m a 2 m
  14. Čtyřboký jehlan 9
    jehlan Je dán pravidelný čtyřboký jehlan. Délka hrany podstavy a = 6,5 cm, boční hrana s = 7,5 cm. Vypočítejte Objem a obsah pláště.
  15. Vrchol budovy
    height_building Z bodů A a B na vodorovném povrchu jsou úhly vyvýšenin horní části budovy 25° a 37°. Pokud | AB | = 57 m, vypočítejte, s přesností na metr, vzdálenosti horní části budovy od A a B, pokud jsou obě na stejné straně budovy
  16. Pravoúhlý Δ
    ruler Pravoúhlý trojúhelník ma délku odvěsny 12 cm a délku přepony 15 cm. Vypočítejte výšku trojúhelníku.
  17. Osový řez
    cone2 Osovým řezem kužele, jehož povrch je 114 mm2, je rovnostranný trojúhelník. Vypočítejte objem kužele.