Na přímce

Na přímce p: 3 x - 4 y - 3 = 0, určte souradnice bodu C, který je ve stejné vzdálenosti od bodů A [4, 4] a B [7, 1].

Správný výsledek:

x =  9
y =  6

Řešení:

3x4y3=0  x=(3+4y)/3=9 y=(3x3)/4 AC=BC  (x4)2+(y4)2=(x7)2+(y1)2  (x4)2+((3x3)/44)2=(x7)2+((3x3)/41)2 1.5x=13.5 32x=272 3x=27 x=27/3=9 3x-4y-3=0 \ \\ \ \\ x=(3+4y)/3=9 \ \\ y=(3x-3)/4 \ \\ |AC|=|BC| \ \\ \ \\ (x-4)^2+(y-4)^2=(x-7)^2+(y-1)^2 \ \\ \ \\ (x-4)^2+((3x-3)/4-4)^2=(x-7)^2+((3x-3)/4-1)^2 \ \\ 1.5x=13.5 \ \\ \dfrac{ 3 }{ 2 }x=\dfrac{ 27 }{ 2 } \ \\ 3x=27 \ \\ x=27 / 3=9 \ \\
y=(3x3)/4=(3 93)/4=6y=(3x-3)/4=(3 \cdot \ 9-3)/4=6



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 0 komentářů:
avatar




Tipy na související online kalkulačky
Základem výpočtů v analytické geometrii je dobrá kalkulačka rovnice přímky, která ze souřadnic dvou bodů v rovině vypočítá smernicový, normálový i parametrický tvar přímky, směrnici, směrový úhel, směrový vektor, délku úsečky, průsečíky se souřadnicovým osami atd.
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • Pagáče
    rohliky Jano s Mišom jedli pagáče. Jano snědl o 3 více než Mišo. Součin jejich počtů (čísel) je 180. Kolik pagáčů snědl každý z nich?
  • Na schodišti
    schody Na schodišti vysokém 3,6 metrů by se počet schodů zvětšil o 3, kdyby se výška jednoho schodu zmenšila o 4 cm. Jak jsou schody vysoké?
  • Kedlubny
    kalerab Cena jednoho kedlubny vzrostla o 0,40 €. Počet kedluben, které může zákazník koupit za 4 €, tak klesl o 5. Zjistěte v eurech novou cenu jednoho kedlubny.
  • Obsah a obvod obdělníka
    rectnagles Obsah obdělníka je 3000 cm2, jeden rozměr je o 10 cm větší než druhý. Určete obvod obdělníka.
  • V rovnoramenném trojúhelníku
    rr_triangle3 V rovnoramenném trojúhelníku ABC se základnou AB; A [-3,4]; B [1,6] leží vrchol C na přímce 5x - 6y - 16 = 0. Vypočítejte souřadnice vrcholu C.
  • Jedna 7
    lichobeznik Jedna ze základen lichoběžníku je o pětinu větší než jeho výška, druhá je větší o 1 cm. Urči rozměry lichoběžníku, pokud je jeho plocha 115 cm2
  • Pravoúhlý 30
    rt_triangle_1 Pravoúhlý trojúhelník s celočíselnou délkou dvou stran má odvěsnu dlouhou √11. Kolik měří jeho nejdelší strana?
  • Válec 24
    valec2_1 Válec má obsah 300 m čtverečních, přičemž výška válce je 12 m . vypočítejte objem tohoto válce.
  • Rozhledna
    tower Jak vysoká je rozhledna? Kdyby byl každý schod o 3 cm nižší, bylo by je na rozhlednu o 60 více. Kdyby byl zase o 3 cm vyšší, bylo by je o 40 méně, než jich je nyní.
  • Ve dvojciferném
    numbers_2 Ve dvojciferném čísle je počet desítek o tři větší než počet jednotek. Jestliže původní číslo násobíme číslem napsaným týmiž číslicemi, ale v obráceném pořadí, dostaneme součin 3 478. Určete původní číslo.
  • Kvadratická 6
    parabol33 Kvadratická funkce má předpis y=x²-2x-3. Načrtněte graf této funkce. Určete průsečíky s osami. Určete souřednice vrcholu.
  • Kvadratická 5
    parabola Kvadratická funkce má předpis y=-2x²-3x+8. Vypočítejte funkční hodnotu v bodě 5, -2 a ½.
  • Čtverec ABCD
    square_axes Je dán čtverec ABCD s délkou strany 100 mm. Vypočítej poloměr kružnice, která prochází vrcholy B, C a středem strany AD.
  • Prodlouží-li
    cube_in_sphere Prodlouží-li se délky hran krychle o 5 cm, zvětší se její objem o 485 cm3. Určete povrch původní i zvětšené krychle.
  • Zorný úhel
    zorny Pozorovatel vidí přímou ohradu dlouhou 60 m v zorném úhlu 30°. Od jednoho konce ohrady je vzdálen 102 m. Jak daleko je pozorovatel od druhého konce ohrady?
  • Oslavenec
    bonbons_1 Ve třídě rozdávají žáci vždy o svých narozeninách spolužákům bonbóny. Oslavenec dá vždy každému po jednom bonbónu, sobě nedává. Za rok se ve třídě rozdalo celkem 650 bonbónů. Kolik žáků je ve třídě? (Poznámka: Všichni žáci třídy měli narozeniny v den, kdy
  • V pravoúhlém 4
    rt_triangle V pravoúhlém trojúhelníku je délka přepony 65 m a rozdíl odvěsen 23 m. Vypočítejte obvod tohoto trojúhelníku.