Z9-I-4

Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devítiny myšleného čísla. Nakonec sečetla všechna tři zapsaná čísla a výsledek napsala na čtvrtý řádek. Poté s úžasem zjistila, že na čtvrtém řádku má zapsánu třetí mocninu jistého přirozeného čísla.

Určete nejmenší číslo, které si Katka mohla myslet na začátku.

Výsledek

n =  11250

Řešení:

9999<n<100000 n=11250 l1=n+n/2=11250+11250/2=16875 l2=n+n/5=11250+11250/5=13500 l3=n+n/9=11250+11250/9=12500 l4=l1+l2+l3=16875+13500+12500=42875 l5=353=42875 n=112509999 < n < 100000 \ \\ n = 11250 \ \\ l_{ 1 } = n+n/2 = 11250+11250/2 = 16875 \ \\ l_{ 2 } = n+n/5 = 11250+11250/5 = 13500 \ \\ l_{ 3 } = n+n/9 = 11250+11250/9 = 12500 \ \\ l_{ 4 } = l_{ 1 }+l_{ 2 }+l_{ 3 } = 16875+13500+12500 = 42875 \ \\ l_{ 5 } = 35^3 = 42875 \ \\ n = 11250



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 19 komentářů:
#
Žák
Jak jste došli k prvnímu číslu n=11250? Děkuji :)

3 roky  2 Likes
#
Www
staci jet od cisla 10000 co je prvni 5-ti mistne cislo a testovat ho ci splna "vlastnosti"....

druha moznost je vypocitet treti odmocninu z 10000 = 21.544346 cize zacat od 223 , 233 az po 353 (co je jen 13 vyskusani vysledku)

#
Žák
A nešlo by nějak matematicky vypočítat n? A ne ho pouze na začátku odhadnout?

3 roky  1 Like
#
Žák
myslim ze neuplne reseni podpori Vasi kreativitu a na neco taky prijidete sami a budete se tesit... Ulohy MO nejsu ze stahnu z internetu a vsichni do tydne odovzdaji stejne reseni....

Hodne pile!

3 roky  2 Likes
#
Tekysk
sewa :::) mas rozhodne pravdu :) a ale tak no ,,, kazdy svoje pochody a my ich nezmenime :)

3 roky  1 Like
#
Týna
Kde jsi přišel na 35 na třetí? Jako, kde jsi to vzal? A proč si myslíš, že to bude zrovna tohle číslo? Děkuji za odpověď.

#
Dr Math
Zde je počítačem vygenerované řešení
10000 = 33.6525, 10001 = 33.6533, 10002 = 33.6545, 10003 = 33.6557, 10004 = 33.6569, 10005 = 33.6581, 10006 = 33.6589, 10007 = 33.6601, 10008 = 33.6613, 10009 = 33.6625, 10010 = 33.6636, 10011 = 33.6648, 10012 = 33.6657, 10013 = 33.6669,

... skratil admin stranky  doktor matematiky...

34.9834, 11235 = 34.9842, 11236 = 34.9853, 11237 = 34.9864, 11238 = 34.9875, 11239 = 34.9886, 11240 = 34.9894, 11241 = 34.9905, 11242 = 34.9916, 11243 = 34.9927, 11244 = 34.9937, 11245 = 34.9946, 11246 = 34.9956, 11247 = 34.9967, 11248 = 34.9978, 11249 = 34.9989, 11250 = 35 Trvalo to asi 35 sekund

3 roky  2 Likes
#
Žák
V jakém programu to je ?

#
žák
A do listu, který bude odevzdávat napíšete, že vám výsledek vygeneroval počítač ??

3 roky  1 Like
#
Www
no ano a mikrosekundu by trvalo vyskusat 13 cisel ci vyhovuje.... resp. 4 minuty na kalkulacce

#
Žák
Jde to samozřejmně i pomocí rovnic a úvah. Kdo chce ale dělat MO by na tohle měl přijít sám.

3 roky  1 Like
#
žák
Takže matematický vzorec pro tuto úlohu neexistuje ??

#
žák
Počítal jsem takto:
x + x/2 + x + x/5 + x + x/9 = y³ (- na třetí)
343/90 = y³             / *90
343x = y³ * 90         / ³√ (- třetí odmocnina)
3,81x =³√ (y³ * 90)
x = (³√ (y * 90)) / 3,81
A jak teď zjistit "x", pokud na druhé straně mám další nevyjádřenou... ?

#
Žák
nebo si můžeš x vyjádřit jako x=(y³*90)/343

#
Pomocník
Hledáte nejnižší pětimístné číslo a máte určit nejmenší číslo, které si Katka mohla myslet, to číslo musí být na třetí, takže můžete zkoušet, třeba 203=8000, stále není pětimístné, tak zkusíte 213=9261, potom zkusíte 223=10648, to je nejnižší pětimístné číslo na třetí, takže odpověď je 22, nikoli 35.

3 roky  1 Like
#
Žák
Ale to číslo na konci není to číslo, které si katka myslela - na třetí, je to jiné přirození číslo na třetí.

#
Žák
Když ale do řádků dosadíš 10648 tak ti výjde 40580,7111 - má být přirozené. Pak by jste nenašel 3odmocninu přirozenou.

#
Žák
Vážení, jestli chápu správně zadání, tak "n" nemůže být 11250, protože to má být součet, což by v tomto případě bylo 9.
takže bych to viděl na "x + n/2" v prvním řádku.

#
Žák
Šla jsem na výpočet takto:
Katka sečetla čísla x + x/2, x + x/5 a x + x/9 - součet je 343/90.x = n3, přičemž 343=73.
Hledané číslo x tedy musí být násobek 90 a třetí mocniny jistého čísla. Vyzkoušením zjistíme, že násobky 90 a třetí mocniny 2,3,4 nejsou pěticiferné, první pěticiferný součin dává třetí mocnina 5, tedy 90.125 = 11250

avatar









Řešíte Diofantovské problémy a hledáte kalkulačku diofantovských celočíselných rovnic?

Další podobné příklady a úkoly:

  1. Eur za kus
    cukriky_9 Za 80 výrobků dvojí jakosti se utržilo celkem 175 Eur. Jestliže výrobek prvé jakosti se prodával po n Eur za kus (n přirozené číslo) a výrobek druhé jakosti po dvou Eur za kus, kolik kusů prvé jakosti bylo prodáno?
  2. Bikvadratická
    eq2_6 Najděte největší přirozené číslo d, které má tu vlastnost, že pro libovolné přirozené číslo n je hodnota výrazu V(n)=n4+11n2−12 dělitelná číslem d.
  3. MO Z9-I-6 2019
    triangles Kristýna zvolila jisté liché přirozené číslo dělitelné třemi. Jakub s Davidem pak zkoumali trojúhelníky, které mají obvod v milimetrech roven Kristýnou zvolenému číslu a jejichž strany mají délky v milimetrech vyjádřeny navzájem různými celými čísly. Jak
  4. V hotelu
    hotel-montfort-tatry-2_2 V hotelu Holiday mají na každém patře stejný počet pokojů. Pokoje jsou číslovány přirozenými čísly postupně od prvního patra, žádné číslo není vynecháno a každý pokoj má jiné číslo. Do hotelu přicestovali tři turisté. První se ubytoval v pokoji číslo 50 n
  5. Dvojciferné 3
    number_line_3 Ciferný součet dvojciferného čísla je devět. Když čísla obrátíme a vynásobíme původním dvojciferným číslem, dostaneme číslo 2430. Jaké je původní dvojciferné číslo?
  6. Připočteme-li
    seq_sum Připočteme-li totéž číslo x k číslům -1,3,15,51 dostaneme první 4 členy geometrické posloupnosti. Vypočtěte číslo x a první 4 členy geometrické posloupnosti.
  7. MO Z8-I-1 2018
    age_6 Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 238. Kdyby totéž provedli za čtyři roky, byl by tento součin 378. Určete součet současných věků Ferdy a Davida.
  8. Z7–I–5 MO 2018
    ruze_5 V zahradnictví Rose si jedna prodejna objednala celkem 120 růží v barvě červené a žluté, druhá prodejna celkem 105 růží v barvě červené a bílé a třetí prodejna celkem 45 růží v barvě žluté a bílé. Zahradnictví zakázku splnilo, a to tak, že růží stejné bar
  9. Z9–I–3 - 2017 kafemlýnky2
    robots Roboti Robert a Hubert skládají a rozebírají kafemlýnky. Přitom každý z nich kafemlýnek složí čtyřikrát rychleji, než jej sám rozebere. Když ráno přišli do dílny, několik kafemlýnků už tam bylo složeno. V 7:00 začal Hubert skládat a Robert rozebírat, přes
  10. Úsečky
    segments Úsečky délek 67 cm a 3.1 dm máme rozdělit na stejné díly tak, aby jejich délka v centimetrech byla vyjádřena celým číslem. Kolika způsoby je můžeme dělit?
  11. Stěny kvádru
    cuboid_9 Vypočítejte objem kvádru, pokud jeho různé stěny mají obsahy 195cm², 135cm² a 117cm².
  12. Stromky
    stromy_3 Sadař koupil stromky za 960 KČ. Kdyby byl každý stromek o 12 KČ lacinější, byl by sadař za tytéž peníze dostal o 4 stromky více. Kolik stromků koupil?
  13. Délky stran a úhly
    rt_triangle_1 Vypočtěte délky stran a úhly v pravoúhlém trojúhelníku. S = 210, o = 70.
  14. Délky stran AP
    rt_triangle_2 Délky stran pravoúhlého trojúhelníka s delší odvěsnou 12 cm tvoří aritmetickou posloupnost. Obsah trojúhelníka je?
  15. Rovnice hyperboly
    hyperbola_4 Napište rovnici hyperboly se středem S [0; 0], která prochází body: A [5; 3] B [8; -10]
  16. Stěnové úhlopříčky
    cuboid_1 Pokud jsou stěnové úhlopříčky kvádru x, y a z (diagonály), pak najděte objem kvádru. Vyřešte pro x = 1.3, y = 2, z = 1.4
  17. Dve tětivy
    tetivy Vypočítejte délku tětivy AB a k ní kolmé tětivy BC, pokud tětiva AB je od středu kružnice k vzdálená 4 cm a tětiva BC má vzdálenost 8 cm.