Osový řez

Osovým řezem kužele, jehož povrch je 114 mm2, je rovnostranný trojúhelník. Vypočítejte objem kužele.

Výsledek

V =  76.3 mm3

Řešení:

S=πa2(a2+a)=34πa2=114 mm2 a=4S3π=6.96 mm h=a2a22=6.02 mm  V=13πr2h=76.3 mm3S = \pi \cdot \dfrac{a}{2}(\dfrac{a}{2}+a) = \dfrac{3}{4}\pi a^2 = 114 \ mm^2 \ \\ a = \sqrt{ \dfrac{4S}{3\pi}} = 6.96 \ mm \ \\ h = \sqrt {a^2-\dfrac{a^2}{2}} = 6.02 \ mm \ \\ \ \\ V = \dfrac{1}{3} \pi r^2 h = 76.3 \ mm^3







Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu. Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka. Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

Další podobné příklady a úkoly:

  1. Komolého kruhový kužel
    frustum-of-a-right-circular-cone Betonový podstavec má tvar pravoúhlého komolého kruhového kužele s výškou 2,5 metru. Průměr horní a dolní základny je 3 stopy a 5 stop. Určitě boční plochu povrchu, celkovou plochu povrchu a objem podstavce.
  2. Kvádr - úhlopříčka
    kvadr_diagonal Vypočítej objem kvádru, jehož tělesova úhlopříčka u se rovná 6.1cm a obdélníková postava má rozměry 3.2cm a 2.4cm
  3. Sádrový
    pyramid_4s Sádrový odlitek má tvar pravidelného čtyřbokého jehlanu. Plášť je tvořen čtyřmi rovnostrannými trojúhelníky se stranou 5 m. Vypočítejte objem a povrch.
  4. Drátěný model
    hexagonprism Drátěný model pravidelného šestibokého hranolu s podstavnou hranou délky a = 8 cm má výšku v = 12 cm. Těleso se přelepí papírem, podstavy tmavým a plášť bílým. - Vypočtěte v cm největší možnou přímou vzdálenost dvou vrcholů drátěného hranolu (tloušťku d
  5. Čtyřboký jehlan 9
    jehlan Je dán pravidelný čtyřboký jehlan. Délka hrany podstavy a = 6,5 cm, boční hrana s = 7,5 cm. Vypočítejte Objem a obsah pláště.
  6. Vrchol budovy
    height_building Z bodů A a B na vodorovném povrchu jsou úhly vyvýšenin horní části budovy 25° a 37°. Pokud | AB | = 57 m, vypočítejte, s přesností na metr, vzdálenosti horní části budovy od A a B, pokud jsou obě na stejné straně budovy
  7. Polokoule 2
    naklon_koule Nádoba tvaru polokoule je zcela naplněna vodou. Jaký poloměr má nádoba, když z ní při naklonění o 30 stupňů vyteče 10 l vody?
  8. Poměr délky úhlopříček
    face_diagonals Délky hran kvádru jsou v poměru 1: 2: 3. Budou ve stejném poměru i délky jeho stěnových úhlopříček? Kvádr má rozměry 5 cm, 10 cm a 15 cm. Vypočítejte velikost stěnových úhlopříček tohoto kvádru.
  9. Z8 – I – 1 MO 2019
    koso_konstrukce Sestrojte kosočtverec ABCD tak, aby jeho úhlopříčka BD měla velikost 8 cm a vzdálenost vrcholu B od primky AD byla 5 cm. Určete všechny možnosti
  10. Mám zahradu
    12perctent Mám zahradu do kopce, navýšení z 0 na 4,5 m při délce 25 m, kolik je to v % stoupání?
  11. Tajný poklad
    max_cylinder_pyramid Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
  12. Dvě těžnice
    triangle_rt_taznice Pravoúhlý trojúhelník, úhel C je 90 stupňů. Znám těžnici ta = 8 cm a těžnici tb = 12 cm. .. Jak spočítat délku stran?
  13. Stěnové úhlopříčky
    cuboid_1 Pokud jsou stěnové úhlopříčky kvádru x, y a z (diagonály), pak najděte objem kvádru. Vyřešte pro x = 1.3, y = 2, z = 1.4
  14. Uhlopříčky
    diagonals_prism Vypočítejte délky stěnových a tělesových úhlopříček kvádru o rozměrech hran 0,5 m, 1 m a 2 m
  15. Dve tětivy
    tetivy Vypočítejte délku tětivy AB a k ní kolmé tětivy BC, pokud tětiva AB je od středu kružnice k vzdálená 4 cm a tětiva BC má vzdálenost 8 cm.
  16. Lichoběžník MO
    right_trapezium Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé. Vypočítejte obvod a obsah takéhoto lichobežníka.
  17. Záhrada
    garden_1 Rozloha čtvercové zahrady tvoří 6/8 rozlohy zahrady tvaru trojúhelníku se stranami 136 m 85 m a 85 m. Kolik metrů pletiva potřebuji na oplocení čtvercové zahrady?