Lichoběžník MO

Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé.

Vypočítejte obvod a obsah takéhoto lichobežníka.

Výsledek

o =  33.31
S =  69.25

Řešení:

AC=12 CD=8  sinΘ=BCAC cosΘ=BCBD  cos2Θ+CDACcosΘ1=0 x2+CDACx1=0  x2+0.667x1=0  a=1;b=0.667;c=1 D=b24ac=0.667241(1)=4.4444444444 D>0  x1,2=b±D2a=0.67±4.442 x1,2=0.33333333±1.0540925533895 x1=0.72075922005613 x2=1.3874258867228   Soucinovy tvar rovnice:  (x0.72075922005613)(x+1.3874258867228)=0  Θ=435258"  BC=ACsinΘ=8.3182260804446 AB=ACcosΘ=8.6491106406735 AD=BC2+(ABCD)2=8.3435142325775  o=AB+BC+CD+AD=33.31|AC| = 12 \ \\ |CD| = 8 \ \\ \ \\ \sin \Theta = \dfrac{|BC|}{|AC|} \ \\ \cos \Theta = \dfrac{|BC|}{|BD|} \ \\ \ \\ \cos^2 \Theta + \dfrac{ |CD|}{|AC|}\cos \Theta - 1 =0 \ \\ x^2 + \dfrac{ |CD|}{|AC|}x - 1 =0 \ \\ \ \\ x^2 +0.667x -1 =0 \ \\ \ \\ a=1; b=0.667; c=-1 \ \\ D = b^2 - 4ac = 0.667^2 - 4\cdot 1 \cdot (-1) = 4.4444444444 \ \\ D>0 \ \\ \ \\ x_{1,2} = \dfrac{ -b \pm \sqrt{ D } }{ 2a } = \dfrac{ -0.67 \pm \sqrt{ 4.44 } }{ 2 } \ \\ x_{1,2} = -0.33333333 \pm 1.0540925533895 \ \\ x_{1} = 0.72075922005613 \ \\ x_{2} = -1.3874258867228 \ \\ \ \\ \text{ Soucinovy tvar rovnice: } \ \\ (x -0.72075922005613) (x +1.3874258867228) = 0 \ \\ \ \\ \Theta = 43^\circ 52'58" \ \\ \ \\ |BC| = |AC| \sin \Theta = 8.3182260804446 \ \\ |AB| = |AC| \cos \Theta = 8.6491106406735 \ \\ |AD| = \sqrt{ |BC|^2 + (|AB|-|CD|)^2} = 8.3435142325775 \ \\ \ \\ o = |AB|+|BC|+|CD| + |AD| = 33.31
S=(AB+CD)BC2=69.25S = \dfrac{(|AB|+|CD|)\cdot |BC|}{2}= 69.25



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 2 komentáře:
#
Žák
mám za to, že cos(x)2+sin(x)2=1. Vy ale počítáte s tím, že 2cos(x)2=1. A to je asi blb2, ne?

#
Žák
Za předpokladu, že jsou zadány délky uhlopříček |AC| = 12 cm a |BD| = 8 cm je plocha příslušného pravoúhlého lichoběžníka 54 cm2 a obvod cca 30,5 cm.

avatar









Tipy na související online kalkulačky
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?
Potřebujete pomoci sčítat, zkrátít či vynásobit zlomky? Zkuste naši zlomkovou kalkulačku.
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

Další podobné příklady a úkoly:

  1. Stěnové úhlopříčky
    cuboid_1 Pokud jsou stěnové úhlopříčky kvádru x, y a z (diagonály), pak najděte objem kvádru. Vyřešte pro x = 1.3, y = 2, z = 1.4
  2. Obdélník
    rectangles Obdélník má úhlopříčku délky 74 cm. Jeho strany jsou v poměru 5: 3. Najděte jeho délky stran.
  3. Výška trojúhelníku
    rs_triangle Vrcholy rovnostranného trojúhelníku leží na 3 různých rovnoběžkách. Prostřední je od krajních vzdálena 5 m, resp. 3 m. Vypočítejte výšku tohoto trojúhelníku.
  4. Přepona PT 3
    triangle_rt1 V pravoúhlém trojúhelníku je jedna odvěsna o 1 m kratší než přepona, druhá odvěsna je o 2 m kratší než přepona. Určitě délky všech stran trojúhelníku.
  5. Tajný poklad
    max_cylinder_pyramid Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
  6. Dvě těžnice
    triangle_rt_taznice Pravoúhlý trojúhelník, úhel C je 90 stupňů. Znám těžnici ta = 8 cm a těžnici tb = 12 cm. .. Jak spočítat délku stran?
  7. Dve tětivy
    tetivy Vypočítejte délku tětivy AB a k ní kolmé tětivy BC, pokud tětiva AB je od středu kružnice k vzdálená 4 cm a tětiva BC má vzdálenost 8 cm.
  8. Kružnice
    touch_circle Najděte rovnice kružnic, které procházejí body A (-2; 4) a B (0, 2) a dotýkají se osy x.
  9. GP tři členy
    progression_ao Druhý a třetí člen geometrické posloupnosti jsou 24 a 12 (c +1) v tomto pořadí. Za předpokladu, že součet prvních tří členů posloupnosti je 76, určitě hodnotu c.
  10. Pole obdélník
    land Pole ve tvaru obdélníka má délku 119 m a šířku 19 m. O kolik se musí zkrátit jeho délka a zvětšit jeho šířka, aby jeho plocha zůstala zachována a jeho obvod se zvětšil o 24 m?
  11. Záhon
    circles Kruhový záhon zvětšily tak, že se jeho poloměr zvětšil o 3 m. Spotřeba substrátu na zvětšený záhon byla (při stejné výšce vrstvy jako před zvětšením) devětkrát větší než předtím. Určete původní poloměr záhonu.
  12. Zvětšíme stranu
    squares Pokud zvětšíme stranu čtverce a = 5m, zvětší se jeho obsah o 10,25%. O kolik % se zvětší strana čtverce a o kolik % obvod čtverce?
  13. Poloměr
    circle_axes Určetě poloměr kruhu, jehož obsah je S = 200 cm².
  14. Obchodník 5
    percent Obchodník dal ráno do své výlohy k vystavenému páru bot cedulku: "Dnes o p% levnější než včera. " Další ráno přelepil číslo p číslem dvakrát větším. Po chvíli však usoudil, že účinnější bude cedulka s nápisem: "Dnes o 62,5% levnější než předevčírem. Určet
  15. Převrácená hodnota 4
    fx Jak vypočítám číslo x, které je o 9 větší než jeho převrácená hodnota (1/x)?
  16. MO 2019 Z8–I–4
    olympics_1 Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
  17. Zmenší-li
    stvorec Zmenší-li se délka stany čtvercové podložky o 6 cm, zmenší se její obsah o 2,76 dm2. Urči délku strany původní i zmenšené podložky.