Krychle

Krychle je vepsána do koule o objemu 4728 cm3. Určete délku hrany krychle.

Výsledek

a =  12 cm

Řešení:

V=4728 cm3 V=43πr3  r=3 V4π3=3 47284 3.1416310.4119 cm  D=2 r=2 10.411920.8238 cm  u=D=20.823820.8238 cm  u=3a  a=u/3=20.8238/312.0226=12  cm V = 4728 \ cm^3 \ \\ V = \dfrac{ 4 }{ 3 } \pi r^3 \ \\ \ \\ r = \sqrt[3]{ \dfrac{ 3 \cdot \ V }{ 4 \pi } } = \sqrt[3]{ \dfrac{ 3 \cdot \ 4728 }{ 4 \cdot \ 3.1416 } } \doteq 10.4119 \ cm \ \\ \ \\ D = 2 \cdot \ r = 2 \cdot \ 10.4119 \doteq 20.8238 \ cm \ \\ \ \\ u = D = 20.8238 \doteq 20.8238 \ cm \ \\ \ \\ u = \sqrt{ 3 } a \ \\ \ \\ a = u/\sqrt{ 3 } = 20.8238/\sqrt{ 3 } \doteq 12.0226 = 12 \ \text { cm }







Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 3 komentáře:
#
Žák
Jak jste do haje prisli na ten vzorec??? Jak ho slozit???

9 měsíců  3 Likes
#
Žák
Vypočítáš průměr koule a ten je stejný jako tělesová úhlopříčka krychle...

#
Žák
Vždyť na tom ilustračním obrázku je to přesně naopak- koule vepsaná do krychle a ne krychle vepsaná do koule. A pak aby to mělo vycházet....

avatar









Potřebujete pomoci sčítat, zkrátít či vynásobit zlomky? Zkuste naši zlomkovou kalkulačku. Chcete proměnit jednotku délky? Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu. Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.

Další podobné příklady a úkoly:

  1. Krychle
    squares_2 Jedna krychle je kouli vepsána a druhá opsána. Vypočítejte rozdíl objemů v obou krychlích, pokud rozdíl jejich povrchů je 231 cm2.
  2. Terezka
    cube Krychle má obsah podstavy 289 mm2. Vypočítej její délku hrany, objem a povrh plášte.
  3. Proměna kvádru
    cube Kvádr o rozměrech 10 cm, 17 cm a 17 cm se má přeměnit na kostku se stejným objemem. Jaká je její hrana?
  4. Mimozemská loď
    cube_in_sphere Mimozemská loď má tvar koule o poloměru r = 3000m a její posádka potřebuje lodí odvézt nasbíraný výzkumný materiál v boxu ve tvaru kvádru se čtvercovou podstavou. Určete délku podstavy a (a výšku h) tak, aby měl box největší možný objem.
  5. Dutá koule 4
    sphere_Nickel Dutá niklová koule má vnější průměr 0,4 metru a vnitřní průměr 0,3 metru. Určete její hmotnost, pokud je hustota niklu 9000 kg/m3.
  6. Tři sklenice
    skleniceRGB Tři sklenice různé barvy mají různý objem. Červená 1,5 litrová je naplněna ze 2/5, modrá o objemu 3/4 litru je naplněna z 1/3 a třetí zelená o objemu 1,2 litru je prázdná. Z červené sklenice nalejeme do zelené 1/4 obsahu a z modré nalejeme do zelené 2/5 o
  7. Kvádr
    cuboid Kvádr s hranou a=12 cm a tělesových úhlopříčkou u=38 cm má objem V=7200 cm3. Vypočítejte velikosti ostatních hran.
  8. Tajný poklad
    max_cylinder_pyramid Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
  9. Čtyřboký jehlan 9
    jehlan Je dán pravidelný čtyřboký jehlan. Délka hrany podstavy a = 6,5 cm, boční hrana s = 7,5 cm. Vypočítejte Objem a obsah pláště.
  10. Kvádr - úhlopříčka
    kvadr_diagonal Vypočítej objem kvádru, jehož tělesova úhlopříčka u se rovná 6.1cm a obdélníková postava má rozměry 3.2cm a 2.4cm
  11. Přeřízneme jehlan
    jehlan_4b_obdelnik Pravidelný čtyřboký jehlan má výšku 40 cm a stranu podstavy 21 cm. Jehlan přeřízneme v poloviční výšce. Jak velký objem budou mít obě části?
  12. Káďe
    nadrz Káď tvaru kvádru je vodou naplněna po okraj. Vnější rozměry jsou 95 cm, 120 cm a 60 cm. Tloušťka všech stěn i dna je 5 cm. Kolik litrů vody se vešlo do kádě?
  13. Bazén
    praded Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. Propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hrano
  14. Osový řez
    cone2 Osovým řezem kužele, jehož povrch je 114 mm2, je rovnostranný trojúhelník. Vypočítejte objem kužele.
  15. Kvádr
    cuboid_1 Kvádr má povrch 1577 cm2, délky jeho hran jsou v poměru 4:1:2. Vypočítej objem kvádru.
  16. Bazén
    swimming-pool Bazén má rozměry dna 9 m a 16 m a výšku 152 cm. Kolik hektolitrů vody je v něm, pokud voda sahá 19 cm pod horní okraj bazénu?
  17. Kužel S2V
    popcorn Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 dm2. Vypočítejte objem tohoto kužele.