Z9 – I – 2 MO 2018

V rovnostranném trojúhelníku ABC je K středem strany AB, bod L leží v třetině strany BC blíže bodu C a bod M leží v třetině strany AC blíže bodu A. Určete, jakou část obsahu trojúhelníku ABC zabírá trojúhelník KLM.

Správný výsledek:

x =  0,2778

Řešení:

a=1 h=a2(a/2)2=12(1/2)20.866  S=a h2=1 0.86620.433  S1=h3 a22=0.8663 1220.0722 S2=2 h3 a22=2 0.8663 1220.1443 S3=h3 2 a32=0.8663 2 1320.0962  S4=S(S1+S2+S3)=0.433(0.0722+0.1443+0.0962)0.1203  x=S4S=0.12030.433=518=0.2778



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 13 komentářů:
#
Ne
Co znamená neznámá h?

#
Dr Math
h = height = vyska trojuhelnika

#
Žák
Mohl by to někdo popsat slovy?

#
Žák
Proč h/3 ?

#
Dr Math
ten trojuhelnik ma tretinovu vysku.... proto h/3

2 roky  1 Like
#
Žák
Nemá to být obecně, nebo těch 0,278 je, že zabírá tuto část?
Jakože kdyby byla odpoved 0,5 tak by to znamenalo že zabíra polovinu?

#
Dr Math
jasne ze se to da obecne... jenomze s cislami se lepe pracuje... Da se dokazat ze tenhle priklad je invariantni ke delce "a", a proto jsme si zvolili a=1 a zjenodusili jsi zivot.... ve vyraze x=S4/S by se a2 vykratilo s a2 ... Je to aj nejaky princip analogie...

#
Žák
A není otázka jakou část zabírá, proto by měla být odpoved například v procentech?

#
Žák
A jak vím, že ta výška je třetinová??

#
Dr Math
Je jedno ci odpoved napisem 5/18 nebo 27,8%.... Ta tretina patrne vyplyva ze "bod L leží v třetině strany" tak je tam nejaka podobnost...

#
Zak
muzu se zeptat co je S1,2,3 a4? jaka cast trojuhelniku

#
Zak
a proc se x=S4/S?

#
Pepa
Je možnost že to můžeme vyřešit jako: troj. AKM 1/3*1/2=1/6
udělat to u všech a sečíst

2 roky  1 Like
avatar









Tipy na související online kalkulačky
Potřebujete pomoci sčítat, zkrátít či vynásobit zlomky? Zkuste naši zlomkovou kalkulačku.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • Z6–I–5 MO 2019
    krize Útvar na obrázku vznikl tak, že z velkého kříže byl vystřižen malý kříž. Každý z těchto křížů může být složen z pěti shodných čtverců, přičemž strany malých čtverců jsou poloviční vzhledem ke stranám velkých čtverců. Obsah šedého útvaru na obrázku je 45 c
  • Z8–I–3 MO 2019
    bus27 Vendelín bydlí mezi dvěma zastávkami autobusu, a to ve třech osminách jejich vzdálenosti. Dnes vyrazil z domu a zjistil, že ať by utíkal k jedné, nebo druhé zastávce, dorazil by na zastávku současně s autobusem. Průměrná rychlost autobusu je 60 km/h. Jako
  • C – I – 3 MO 2018
    olympics_10 Nechť a, b, c jsou kladná reálná čísla, jejichž součet je 3, a každé z nich je nejvýše 2. Dokažte, že platí nerovnost: a2 + b2 + c2 + 3abc < 9
  • Z5–I–1 MO 2018
    fixy_1 Míša má pět pastelek. Vojta jich má méně než Míša. Vendelín jich má tolik, kolik Míša a Vojta dohromady. Všichni tři dohromady mají sedmkrát více pastelek, než má Vojta. Kolik pastelek má Vendelín?
  • Z7-1-3 MO 2018
    lieskovce_1 Děda připravil pro svých šest vnoučat hromádku lískových oříšků s tím, ať si je nějak rozeberou. První přišel Adam, odpočítal si polovinu, přibral si ještě jeden oříšek a odešel. Stejně se zachoval druhý Bob, třetí Cyril, čtvrtý Dan i pátý Eda. Jen Franta
  • Z7-I-5 MO 2017
    triangle_1111_6 Prokop zostrojil trojuholník ABC, ktorého vnútorný uhol pri vrchole A bol väčší ako 60° a vnútorný uhol pri vrchole B bol menší ako 60°. Juraj narysoval v polrovine určenej priamkou AB a bodom C bod D, a to tak, že trojuholník ABD bol rovnostranný. Potom
  • Z9-I-5 MO 2017 obdélník
    flg Uvnitř obdélníku ABCD leží body E a F tak, že úsečky EA, ED, EF, FB, FC jsou navzájem shodné. Strana AB je dlouhá 22 cm a kružnice opsaná trojúhelníku AFD má poloměr 10cm. Určete délku strany BC.
  • Z7–I–2 MO 2017
    rt_triangle_2 Jsou dány dvě dvojice rovnoběžných přímek AB k CD a AC k BD. Bod E leží na přímce BD, bod F je středem úsečky BD, bod G je středem úsečky CD a obsah trojúhelníku ACE je 20 cm2. Určete obsah trojúhelníku DFG.
  • MO Z6–I–1 - 2017 - Anička
    numbs_9 Anička a Blanka si napsaly každá jedno dvojmístné číslo, které začínalo sedmičkou. Dívky si zvolily různá čísla. Poté každá mezi obě číslice vložila nulu, takže jim vzniklo trojmístné číslo. Od něj každá odečetla svoje původní dvojmístné číslo. Výsledek j
  • MO Z9–I–1 2017
    age_4 Věkový průměr všech lidí na oslavě byl roven počtu přítomných. Po odchodu jedné osoby, které bylo 29 let, byl věkový průměr zase roven počtu přítomných. Kolik lidí bylo původně na oslavě?
  • Bikvadratická
    eq2_6 Najděte největší přirozené číslo d, které má tu vlastnost, že pro libovolné přirozené číslo n je hodnota výrazu V(n)=n4+11n2−12 dělitelná číslem d.
  • Mnohočleny - trojčleny
    eq2_5 Nalezněte všechny trojčleny ? s celočíselnými koeficienty a, b a c, pro která platí P(1) < P(2) < P(3) a zároveň ((P(1)) 2 + ((P(2)) 2 + ((P(3)) 2 = 22.
  • Dlaždice MO-Z5-3-66
    stvorce Na obrázku je čtvercová dlaždice se stranou délky 10 dm, která je složena ze čtyř shodných obdélníků a malého čtverce. Obvod malého čtverce je pětkrát menší než obvod celé dlaždice. Určete rozměry obdélníků.
  • Z6–I–2
    chodnik_1 Pan Kostkorád vlastnil zahradu obdélníkového tvaru, na které postupně dláždil chodníky z jedné strany na druhou. Chodníky byli stejně široké , křížily se na dvou místech a jednou vydlážděná se při dalším dlážděním přeskakovala. Když pan Kostkorád vydláždi
  • Z9–I–3
    ball_floating_water Julince se zakutálel míček do bazénu a plaval ve vodě. Jeho nejvyšší bod byl 2 cm nad hladinou. Průměr kružnice, kterou vyznačila hladina vody na povrchu míčku, byl 8 cm. Určete průměr Julinčina míčku.
  • Z9 – I – 5 MO 2018
    kruhy_mo Adam a Eva vytvářeli dekorace z navzájem shodných bílých kruhů. Adam použil čtyři kruhy, které sestavil tak, že se každý dotýkal dvou jiných kruhů. Mezi ně pak vložil jiný kruh, který se dotýkal všech čtyř bílých kruhů, a ten vybarvil červeně. Eva použila
  • V rovnoramenném 4
    rr_lichobeznik_1 V rovnoramenném lichoběžníku ABCD jsou dány jeho základny AB=20cm, CD=12cm a ramena AD=BC=8cm. Určete jeho výšku a úhel alfa při vrcholu A