Cukrářka 2
Cukrářka potřebuje z cukrářské hmoty ve tvaru koule o poloměru 25cm vyřezat ozdobu ve tvaru kužele. Určete poloměr podstavy ozdoby a (a výšku h) tak, aby se na výrobu ozdoby použilo co nejvíce hmoty.
Správný výsledek:
Správný výsledek:

Zobrazuji 0 komentářů:
Tipy na související online kalkulačky
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?
Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Další podobné příklady a úkoly:
- Rostoucí funcke
Která z funkci je rostoucí? a) y = 2-x b) y = 20 c) y = (x + 2). (-5) d) y = x-2
- Tajný poklad
Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
- Bazén
Zjistěte rozměry otevřeného bazénu se čtvercovým dnem o objemu 32 m3 tak, aby na vyzdění jeho stěn a dna bylo třeba nejmenší množství materiálu.
- Kladné číslo
Najděte takové kladné číslo, aby součet tohoto čísla a jeho převrácené hodnoty byl minimální.
- Papír
Tvrdý papír ve tvaru obdélníku má rozměry 60 cm a 28 cm. V rozích se odstřihnou stejné čtverce a zbytek se ohne do tvaru otevřené krabice. Jak dlouhá musí být strana odříznutých čtverců, aby objem krabice byl největší?
- Koza
Je louka tvaru kruhu r=34 m. Jak dlouhý musí být provaz na uvázání kozy ke kolíku na obvodu louky, aby spásla jen polovinu louky?
- Koule v kuželu
Kouli o poloměru 3 cm opište kužel minimálního objemu. Určete jeho rozměry.
- Kužel
Do rotačního kužele o rozměrech r = 8 cm, v = 8 cm vepište válec maximálního objemu tak, aby osa válce byla kolmá na osu kužele. Určete rozměry válce.
- Koule a kužel
Do koule o poloměru G = 36 cm vepište kužel s největším objemem. Jaký je tento objem a jaké jsou rozměry kužele?
- Derivace
Existuje funkce, jejíž derivace je tatéž funkce?
- Vrh
Těleso bylo vrženo svisle vzhůru rychlostí v0 = 79 m/s. Výši tělesa v závislosti na čase popisuje rovnice ?. Jakou maximální výši dosáhne těleso?
- Socha
Na podstavci vysokém 4 m stojí socha vysoká 2,7 metrů. V jaké vzdálenosti od sochy se musí pozorovatel postavit, aby ji viděl v největším zorném úhlu? Vzdálenost oka pozorovatele od země je 1,7 m.
- Žebřík
4m žebřík se dotýká krychle 1mx1m postavené u zdi. Jak vysoko na zdi dosáhne?
- Simplexova metóda
Řetězec obchodních domů plánuje investovat do televizní reklamy až 24 000 Eur. Všechny reklamní spoty budou umístěny na televizní stanici, na níž odvysílání 30 sekundového spotu stojí 1000 Eur a sleduje ho 14 000 potenciálních zákazníků, během prime týmu
- Nádoba tvaru válce
Nahoru otevřená nádoba tvaru válce má objem V = 3140 cm3. Určitě rozměry válce (r, v) tak, aby na vytvoření této nádoby se minulo nejméně materiálu.
- Derivační problém
Součet dvou čísel je 12. Najděte tato čísla, jestliže: a) Součet jejich třetích mocnin je minimální. b) Součin jednoho s třetí mocninou druhého je maximální. c) Obě jsou kladná a součin jednoho s druhou mocninou druhého je maximální.
- Střelec 4
Střelec střílí do terče, přičemž předpokládáme, že jednotlivé výstřely jsou navzájem nezávislé a pravděpodobnost zásahu je u každého z nich 0,2. Střelec střílí tak dlouho, dokud poprvé terč nezasáhne, poté střelbu ukončí. (a) Jaký je nejpravděpodobnější p