Čtyřboký jehlan

Je dán pravidelný čtyřboký jehlan ABCDV; | AB | = 4cm; v = 6cm. Určete úhel přímek AD a BV.

Správný výsledek:

X =  72,452 °

Řešení:

a=4 cm v=6 cm  s=v2+(a/2)2=62+(4/2)22 10 cm6.3246 cm  tanX=s/(a/2)  X1=arctan(2 s/a)=arctan(2 6.3246/4)1.2645 rad  X=X1 =X1 180π  =1.2645189576252 180π  =72.452  =72.452=72276"a=4 \ \text{cm} \ \\ v=6 \ \text{cm} \ \\ \ \\ s=\sqrt{ v^2 + (a/2)^2 }=\sqrt{ 6^2 + (4/2)^2 } \doteq 2 \ \sqrt{ 10 } \ \text{cm} \doteq 6.3246 \ \text{cm} \ \\ \ \\ \tan X=s / (a/2) \ \\ \ \\ X_{1}=\arctan( 2 \cdot \ s/a)=\arctan( 2 \cdot \ 6.3246/4) \doteq 1.2645 \ \text{rad} \ \\ \ \\ X=X_{1} \rightarrow \ ^\circ =X_{1} \cdot \ \dfrac{ 180 }{ \pi } \ \ ^\circ =1.2645189576252 \cdot \ \dfrac{ 180 }{ \pi } \ \ ^\circ =72.452 \ \ ^\circ =72.452 ^\circ =72^\circ 27'6"



Budeme velmi rádi, pokud náhodou najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 0 komentářů:
avatar




Tipy na související online kalkulačky
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Další podobné příklady a úkoly:

  • Dvanásťuholník
    clocks Vypočítejte velikost menšího z úhlů, který určují přímky A1 A4 a A2 A10 v pravidelném dvanásťuholníku A1A2A3. .. A12. Výsledek uveďte v stupních.
  • Souřadnice vrcholů
    geodet Určete souřadnice vrcholů a obsah rovnoběžníku, jehož dvě strany leží na přímkách 8x + 3y + 1 = 0, 2x + y-1 = 0 a úhlopříčka na přímce 3x + 2y + 3 = 0
  • Čtverec 28
    ctverec_2 Čtverec ABCD má střed S[−3, −2] a vrchol A[1, −3]. Určete souřadnice ostatních vrcholů čtverce.
  • Přímky
    lines Najděte hodnotu t, pokud přímky 2tx + 5y-6 = 0 a 5x-4y + 8 = 0 jsou kolmé, rovnoběžné. Jaký úhel svírá každá z přímek s osou x, najděte úhel mezi čarami?
  • Dvaja
    crossing Dvě přímé čáry kříží v pravém úhlu. Dva lidé začínají současně v místě křižovatky. John jde rychlostí 4 km/h po jedné cestě a Peter jede rychlostí 8 km/h po druhé cestě. Jak dlouho bude trvat, než budou vzdálený 20√5 km od sebe?
  • Najděte
    scalar_product Najděte vektor v4 kolmý na vektory v1 = (1, 1, 1, -1), v2 = (1, 1, -1, 1) a v3 = (0, 0, 1, 1)
  • Úhel tělesových úhlopříček
    body_diagonals_angle Pomocí vektorového skalárního součinu (tečky) produktu vypočítejte úhel tělesových úhlopříček kostky.
  • Jsou dány
    vectors_sum0 Jsou dány body A(1,2), B(4,-2) a C(3,-2) . Najděte parametrické rovnice přímky, která: a) Prochází bodem C a je rovnoběžná s přímkou AB, b) Prochází bodem C a je kolmá k přímce AB.
  • Trojúhelník KLM
    triangle_rt_taznice Dané jsou body K (-3; 2), L (-1; 4), M (3, -4). zjistěte: a) zda je trojúhelník KLM pravoúhlý b) vypočítejte délku těžnice na stranu k c) napište souřadnice vektoru LM d) napište smernicový tvar strany KM e) napište smernicový tvar osy strany KM
  • Vzdálenost
    distance_point_line Vypočítejte vzdálenost bodu A [0, 2] od přímky procházející body B [9, 5] a C [1, -1].
  • Parametrický tvar
    vzdalenost Vypočítejte vzdálenost bodu A[2,1] od přímky p: X=-1+3t Y=5-4t Přímka p má parametrický tvar rovnice přímky. ..
  • Souměrnost
    symmetry Najděte obraz A´ bodu A[1,2] v osové souměrnosti s osou p: x=-1+3t, y=-2+t (t = jsou realná čísla)
  • Kružnice a tečna
    distance-between-point-line Najděte rovnici kružnice se středem v (1,20), která se dotýká přímky 8x + 5y-19 = 0
  • Sklon úsečky
    axes2 Úsečka má své koncové body na souřadnicových osách a formuje s nimi trojúhelník s plochou 36 čtverečních jednotek. Úsečka prochází bodem (5,2). Jaký je sklon úsečky?
  • Kolineární body
    collinear Ukažte, že body A (-1,3), B (3,2), C (11,0) jsou kolineární (leží na jedné přímce).
  • Kolmé 3D vektory
    3dperpendicular Najděte vektor a = (2, y, z) tak, že a⊥b a ⊥ c kde b = (-1, 4, 2) a c = (3, -3, -1)
  • Souřadnice těžiště
    triangle_234 Nechť A = [3, 2, 0], B = [1, -2, 4] a C = [1, 1, 1] jsou 3 body v prostoru. Vypočítejte souřadnice těžiště △ ABC (je to průsečík těžnic).