Věž

Kolik metrů čtverečních je potřeba na pokrytí věže tvaru pravidelného čtyřbokého jehlanu o podstavné hraně 10 metrů, je-li odchylka boční hrany od roviny podstavy 68°? Při pokrytí se počítá s odpadem 10%.

Výsledek

S =  400.438 m2

Řešení:

Textové řešení S =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Naše kalkulačka pro výpočet procent Vám pomůže rychle vypočítat různé typické úlohy s procenty. Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka. Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

Další podobné příklady:

  1. Plech 3
    jehlan3_3 Kolik m2 pozinkovaného plechu se spotřebuje na pokrytí střechy věže, která má tvat čtyřbokohého jehlanu, jehož podstava hrany má délku 6m. Výška věže je 9m. Při pokrývání se počítá s 5 % odpadem plechu?
  2. Střecha domu
    roof_pyramid_2 Střecha domu má tvar pravidelného čtyřbokého jehlanu s podstavnou hranou 17 m. Kolik m2 je třeba na její pokrytí, jestliže sklon střechy 57° a na spoje a odpad počítáme 11% plechu navíc?
  3. Střecha 7
    pyramid_in_cube_1 Střecha má tvar pravidelného čtyřbokého jehlanu s podstavnou hranou 12m a výškou 4m. Kolik procent připadlo na záhyby a odpad, jestliže se spotřebovalo na jeji zhotovení 181,4m2 plechu?
  4. Střecha
    veza_2 Střecha kostelní věže má tvar pravidelného čtyřbokého jehlanu s podstavnou hranou délky 5,4m a výškou 5m. Bylo zjištěno, že bude třeba opravit 27% krytiny na střešní ploše. Jaké množství materiálu bude třeba?
  5. Vysokou zeď
    mur Mám vysokou zeď 2m. Potřebuji 15 stupňů úhel (směrem nahoru) na další zeď vzdálenou 4m. Jak vysoký musí být druhá zeď?
  6. Věž
    pyramid Vypočtěte povrch pravidelného čtyřbokého jehlanu, jehož podstavná hrana měří 6 cm, je-li odchylka roviny boční stěny od roviny podstavy 50 stupňů.
  7. Tangens úhlu
    tan V případě, že tangens úhlu a pravoúhlého trojúhelníku je 0,8. Pak je její nejdelší strana . ..
  8. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?
  9. Javor
    tree_javor Vrchol stromu - javoru vidno ze vzdálenosti 3 m od kmene stromu z výšky 1.8 m pod úhlem 62°. Zjistěte výšku stromu.
  10. Trojúhelník
    lalala V trojúhelníku ABC se stranou BC délky 2 cm je bod K středem strany AB. Body L a M rozdělují stranu AC na tři shodné úsečky. Trojúhelník KLM je rovnoramenný s pravým úhlem u vrcholu K. Určete délky stran AB, AC trojúhelníku ABC.
  11. Pravoúhlý lichoběžník 4
    right_trapezium Vypočítejte obsah pravouhleho lichoběžníku ABCD s pravým uhlem pri vrcholu A: a= 3 dm b= 5 dm c= 6 dm d=4 dm
  12. Rovnoramenný IV
    iso_triangle V rovnoramenném trojúhelníku ABC je |AC| = |BC| = 13. |AB| = 10. Vypočtěte poloměr vepsané (r) a opsané (R) kružnice.
  13. Euklid2
    euclid V pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C je dána odvěsna a=27 a výška v=12. Určete obvod trojúhelníka.
  14. Trojúhelník
    triangle_circle Vypočítejte obsah pravoúhlého trojúhelníku ΔABC, pokud jedna odvěsna je dlouhá 14 a protilehlý úhel je 59°.
  15. ABS KC
    complex_num Vypočítejte absolutní hodnotu komplexního čísla -15-29i.
  16. Obvod trojúhelníku
    rt_triangle_1 Velikost úhlu A je 60° velikost úhlu B je 90° velikost strany c je 15 cm. Vypočtěte obvod trojúhelníku.
  17. Euklid4
    euclid_2 Odvěsny pravoúhlého trojúhelníku mají rozměry 244 m a 246 m. Vypočítejte délky přepony a výšky na přeponu.