Rolák

Ve třídě bylo 12 žáků. Devět měli oblečené kalhoty a osm rolák. Kolik žáků mělo oblečené kalhoty s rolákem?

Výsledek

a =  5
b =  8

Řešení:

Textové řešení a =
Textové řešení b =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

3 komentáře:
#1
Žák
opět nejednoznačná úloha, protože kalhoty s rolákem může mít 5 - 8 žáků

#2
Ales
mate pravdu; dik, opravime ze uloha bude mat min a max jako reseni

#3
Žák
Je to opraveno nebo ne? zdá se mi, že to máte dost rozhozený(ten postup). podle mě je min 5 a max 8.

avatar









K vyřešení tohoto příkladu jsou potřebné tyto znalosti z matematiky:

Další podobné příklady:

  1. Eur za kus
    cukriky_9 Za 80 výrobků dvojí jakosti se utržilo celkem 175 Eur. Jestliže výrobek prvé jakosti se prodával po n Eur za kus (n přirozené číslo) a výrobek druhé jakosti po dvou Eur za kus, kolik kusů prvé jakosti bylo prodáno?
  2. Z9–I–3 - 2017 kafemlýnky2
    robots Roboti Robert a Hubert skládají a rozebírají kafemlýnky. Přitom každý z nich kafemlýnek složí čtyřikrát rychleji, než jej sám rozebere. Když ráno přišli do dílny, několik kafemlýnků už tam bylo složeno. V 7:00 začal Hubert skládat a Robert rozebírat, přes
  3. 9.A
    exam Do 9.A chodí více než 20 žáků ale méně než 40 žáků. Třetina žáků napsala test z matematiky na jednotku, šestina na dvojku a devítinám na trojku. Nikdo nedostal čtyřku. Kolik žáků 9.A napsalo test na pětku?
  4. Dvojciferné 3
    number_line_3 Ciferný součet dvojciferného čísla je devět. Když čísla obrátíme a vynásobíme původním dvojciferným číslem, dostaneme číslo 2430. Jaké je původní dvojciferné číslo?
  5. Višně
    visne Višně v misce mohou být rozděleny stejným dílem mezi 22 nebo 5 nebo 17 dětí. Kolik nejmíň je v misce višní?
  6. Klempíř
    klempir Klempíř měl rozstříhat pás plechu o rozměrech 380 cm a 60cm na co největší čtverec tak, aby nevznikl žádný odpad. Vypočítej délku strany jednoho čtverce. Kolik čtverců nastříhal?
  7. Houska
    pletenky Houska stojí 44 centů. Kolik pleteniek třeba nejméně koupit, abychom mohli zaplatit v hotovosti pouze celými eury?
  8. Úsečky
    segments Úsečky délek 67 cm a 3.1 dm máme rozdělit na stejné díly tak, aby jejich délka v centimetrech byla vyjádřena celým číslem. Kolika způsoby je můžeme dělit?
  9. Délky stran a úhly
    rt_triangle_1 Vypočtěte délky stran a úhly v pravoúhlém trojúhelníku. S = 210, o = 70.
  10. Diofant 2
    1diofantos Je rovnice   ? řešitelná na množině celých čísel Z?
  11. Diofantovská rovnice
    diofantos V množině celých čísel (Z) řešte rovnici: ? Výsledek zapište jako násobek celočíselného parametru ?, (parametr t = ...-2, -1,0,1,2,3... pokud má rovnice nekonečně mnoho řešení)
  12. Stěny kvádru
    cuboid_9 Vypočítejte objem kvádru, pokud jeho různé stěny mají obsahy 195cm², 135cm² a 117cm².
  13. Bikvadratická
    eq2_6 Najděte největší přirozené číslo d, které má tu vlastnost, že pro libovolné přirozené číslo n je hodnota výrazu V(n)=n4+11n2−12 dělitelná číslem d.
  14. Pravoúhlý trojúhelník Alef
    r_triangle area pravoúhlého trojúhelníku je 294 cm2 a jeho přepona má délku 35 cm. Jaké jsou délky jeho odvěsen?
  15. 3uhelník obsah
    right_triangle_1 Vypočtěte obsah pravoúhlého trojúhelníku, jehož delší odvěsna je o 6 dm kratší než přepona a o 3 dm delší než kratší odvěsna.
  16. Připočteme-li
    seq_sum Připočteme-li totéž číslo x k číslům -1,3,15,51 dostaneme první 4 členy geometrické posloupnosti. Vypočtěte číslo x a první 4 členy geometrické posloupnosti.
  17. Lichobežník
    lichobeznik_3 Lichoběžník ABCD a = 35m b = 28m c = 11m a d = 14m. Jak vypočítat jeho obsah?