Užasné číslo

Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.

Výsledek

n =  28

Řešení:

Textové řešení n =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

6 komentářů (7 odpovědí celkově):
#1
Žák
jiné řešení to skutečně nemá ? Kdyžtak zdůvodnit :)

#2
Www
Nevime o dalsim reseni. Resp. s cislami pod 100000 urcite ne. Zajima nas to taky.

#3
Žák
a mohli by jste prosím zdůvodnit ?

#4
Petr
To zduvodneni nas zajima taky; ide najma o to ze "součet všech jeho dělitelů" zvycejne pro velke cisla n presahne hodnotu 2n. Vezmime prvocislo. To ma soucet delitelu n+1 (ma presne 2 delitele, n a 1). Cislo n ktere ma 3 delitele a,b,c, ma soucet delitelu minimalne n+1+a+b+c+ab+ac+bc > 2n :D Ale exaktne to zduvodnit nevim a cekame ze nekto moudrejsi nam to dopovi ako to je...

#5
Kvak
Nápověda. Kolik nejvíce dělitelů může mít číslo, které je součinem tří ne nutně různýchprvočísel?

Možné řešení. Protože úžasné číslo je sudé, alespoň jeden z jeho prvočíselných dělitelůje 2; zbylé dva prvočíselné dělitele označíme b a c. Úžasné číslo je tedy rovno součinu 2bc.Všichni dělitelé takového čísla jsou 1, 2, b, c, 2b, 2c, bc, 2bc, přičemž některá z těchtočísel se mohou rovnat. Postupně probereme všechny možnosti podle počtu a typu různých prvočíselných dělitelů.

a) Předpokládejme, že všichni prvočíselní dělitelé jsou stejní, tedy b = c = 2. V takovém případě by úžasné číslo bylo 8 a všichni jeho dělitelé by byli 1, 2, 4, 8. Součet všech dělitelů by byl 15, což není dvojnásobek čísla 8. Případ b = c = 2 tedy není možný.

b) Předpokládejme, že dva prvočíselní dělitelé jsou rovni 2, tedy b = 2. V takovém případě by úžasné číslo bylo 4c a všichni jeho dělitelé by byli 1, 2, c, 4, 2c, 4c. Součet všechdělitelů by byl 7 + 7c a podle zadání má platit7+7c = 8c.To platí právě tehdy, když c = 7; odpovídající úžasné číslo je 4c = 28.

c) Předpokládejme, že dva prvočíselní dělitelé jsou stejní, ovšem oba různí od 2, tedyb = c = 2. V takovém případě by úžasné číslo bylo 2b^2 a všichni jeho dělitelé by byli 1, 2,b, 2b, b^2, 2b^2. Součet všech dělitelů by byl 3 + 3b + 3b^2 a podle zadání má platit 3+3b + 3b2 = 4b2, 3(1 + b) = b^2. Číslo nalevo je násobkem čísla 3, tedy číslo napravo má také být násobkem 3. Vzhledemk tomu, že b je prvočíslo, muselo by být b = 3. V takovém případě by však nalevo bylo 3 · 4 = 12, zatímco napravo 3x2 = 9. Případ b = c = 2 tedy není možný.

d) Předpokládejme, že prvočíselní dělitelé jsou navzájem různí, tedy 2 = b = c = 2. V takovém případě by úžasné číslo bylo 2bc a všichni jeho dělitelé by byli 1, 2, b, c, 2b, 2c,bc, 2bc. Součet všech dělitelů by byl 3 + 3b + 3c + 3bc a podle zadání má platit
   3+3b + 3c + 3bc = 4bc,3(1 + b + c) = bc.

Číslo nalevo je násobkem čísla 3, tedy číslo napravo má také být násobkem 3. Vzhledemk tomu, že b a c jsou prvočísla, muselo by být buď b = 3, nebo c = 3. Pro b = 3 by předchozí rovnost vypadala takto 3 · (4 + c)=3c, což ovšem neplatí pro žádné c. Diskuse pro c = 3je obdobná. Případ b = c = 2 tedy není možný.

Jediné úžasné číslo je 28.

#6
Dominikbnp
Vždyť ze zadání je zřejmé, že hledáme dokonalá čísla. A je dávno známa věta, v jakém tvaru musí být všechna (sudá) dokonalá čísla. Z toho to plyne hned.

#1
Zkus rozložit 6 na součin tří prvočísel

avatar









K vyřešení tohoto příkladu jsou potřebné tyto znalosti z matematiky:

Další podobné příklady:

  1. Čtyřmístné číslo
    numbers_1 Najdi takové čtyřmístné číslo, jehož čtyřnásobek napsaný odzadu, je totéž číslo.
  2. Prvočísla
    prime_1 Christian Goldbach, matematik, zjistil, že každé sudé číslo větší než 2 lze vyjádřit jako součet dvou prvočísel. Napište nebo vyjadřte 2018 jako součet dvou prvočísel.
  3. Dělitele
    triangle_div Kolik různých dělitelů má číslo ??
  4. Delitelnost
    dots Určete nejmenší celé číslo, které při dělení 11 dává zbytek 4, při dělení 15 dává zbytek 10 a při dělení 19 dává zbytek 16.
  5. Úsečky
    segments Úsečky délek 67 cm a 3.1 dm máme rozdělit na stejné díly tak, aby jejich délka v centimetrech byla vyjádřena celým číslem. Kolika způsoby je můžeme dělit?
  6. Čísla
    ten Určete počet všech přirozených čísel menších než 4183444, pokud každé je současně dělitelné 29, 7, 17. Jaký je jejich součet?
  7. Cukr - kvádr
    kocky_cukor Pejko dostal od svého pána kvádr složený z navzájem stejných kostek cukru, kterých bylo nejméně 1000 a nejvíce 2000. Pejko kostky cukru odjeda po jednotlivých vrstvách-první den odjedu jednu vrstvu zepředu, druhý den jednu vrstvu zprava a třetí den jednu
  8. Diofant 2
    1diofantos Je rovnice   ? řešitelná na množině celých čísel Z?
  9. Diofantovská rovnice
    diofantos V množině celých čísel (Z) řešte rovnici: ? Výsledek zapište jako násobek celočíselného parametru ?, (parametr t = ...-2, -1,0,1,2,3... pokud má rovnice nekonečně mnoho řešení)
  10. Balík
    latky_textil V balíku je méně než 14 m látky. Budeme-li z ní stříhat jen na blůzy nebo jen na šaty, nezůstane nám žádný zbytek. Na jednu blůzu se spotřebuje 1.5 m látky, na jedny šaty 2.4 m. Určete množství látky v balíku.
  11. Houska
    pletenky Houska stojí 44 centů. Kolik pleteniek třeba nejméně koupit, abychom mohli zaplatit v hotovosti pouze celými eury?
  12. Sněhulák 2
    snowman_1 Na medaili, která má tvar kruhu o průměru 18 cm, je narýsován sněhulák tak, že jsou splněny následující požadavky: 1.sněhulák je složen ze tří kruhů , 2.mezera nad sněhulákem je stejná jako pod ním, 3.průměry všech kruhů vyjádřené v cm jsou celočíselné,
  13. Sněhulák
    snehuliak_1 V kruhu o průměru 34 cm jsou narýsovány 3 kruhy/jako sněhulák/ pro které platí: průměry jsou celočíselné, průměr každého většího kruhu je o 2 cm větší než průměr předchozího kruhu. Urči výšku sněhuláka, tak aby byl nejvyšší.
  14. Vnuk s dědou
    vnuk_dedo Vnuk s dědou si počítali kolik mají spolu let. Součin jejich let je 365. Kolik je součet jejich let?
  15. Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  16. Dlaždice
    dlazdice Z kolika dlaždic o rozměrech 20 cm a 30 cm můžeme sestavit čtverec maximálnych rozmerů, máme-li k dispozici nejvýše 881 dlaždic.
  17. Houby z lesa
    dubak Magda a Terezka šly na houby. Celkem našly 70 hub. Magda zjistila, že mezi houbami našla 5/9 bedel. Tereza zjistila, že mezi jí nalezenými houbami jsou 2/17 žampionů. Kolik hub našla Magda?