Z7-I-4 hvězdičky 4949

Napište namísto hvězdiček, aby následující zápis součinu dvou čísel byl platný:
∗ ∗ ∗
· ∗ ∗ ∗
∗ ∗ ∗ ∗
4 9 4 9
∗ ∗ ∗
∗ ∗ ∗ 4 ∗ ∗

Výsledek

a =  707
b =  176
c =  124432

Řešení:

Textové řešení c =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Další podobné příklady:

  1. MO Z6-6-1
    kruhy_1 Do prázdných polí v následujícím obrázku doplňte celá čísla větší než 1 tak, aby v každém tmavším políčku byl součin čísel ze sousedních světlejších políček: Jaké je číslo je středu?
  2. Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
  3. Pan Cuketa
    cuketa Pan Cuketa měl obdelníkovou zahradu. jejíž obvod byl 28 metrů. Obsah celé zahrady vyplnily právě čtyři čtvercové záhony, jejichž rozměry v metrech byly vyjádřeny celými čísly. Určete, jaké rozměry mohla mít zahrada. najděte všechny možnosti a zapište n j
  4. Jízdní kola
    cyclist_11 Jsi majitel dopravního hřiště. Kup jízdní kola dvou barev libovolného počtu, ale musíš utratit přesně 120000Kč. Modré kolo stojí 3600Kč a červené kolo stojí 3200Kč.
  5. Z5–I–6 MO 2017
    prime_1 Na stole leželo osm kartiček s čísly 2, 3, 5, 7, 11, 13, 17, 19. Ferda si vybral tři kartičky. Sečetl na nich napsaná čísla a zjistil, že jejich součet je o 1 větší než součet čísel na zbylých kartičkách. Které kartičky mohly zůstat na stole? Určete všech
  6. MO Z8–I–3 - 2017 - Adélka
    numbers2_32 Adélka měla na papíře napsána dvě čísla. Když k nim připsala ještě jejich největší společný dělitel a nejmenší společný násobek, dostala čtyři různá čísla menší než 100. S úžasem zjistila, že když vydělí největší z těchto čtyř čísel nejmenším, dostane nej
  7. Z9-I-4
    numbers_30 Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devíti
  8. Z7-I-4 MO 2017
    math_mo_2 Na stole leželo šest kartiček s ciframi 1, 2, 3, 4, 5, 6. Anežka z těchto kartiček složila šestimístné číslo, které bylo dělitelné šesti. Potom postupně odebírala kartičky zprava. Když odebrala první kartičku, zůstalo na stole pětimístné číslo dělitelné p
  9. Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  10. Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  11. MO Z7–I–3 2017
    zoo_2 Zoologická zahrada nabízela školním skupinám výhodné vstupné: každý pátý žák dostává vstupenku zdarma. Pan učitel 6.A spočítal, že pokud koupí vstupné dětem ze své třídy, ušetří za čtyři vstupenky a zaplatí 1 995 Kč. Paní učitelka 6.B mu navrhla, ať koupí
  12. Mnohonožka Z6–I–3
    mnohonozky.JPG Mnohonožka Mirka sestává z hlavy a několika článků, na každém článku má jeden pár nohou. Když se ochladilo, rozhodla se, že se obleče. proto si na třetím článku od konce a potom na každém dalším třetím článku oblékla ponožku na levou nožku. Podobně si na
  13. Zvonkohra
    Zvonkohra.JPG Zvonkohra na nádvoří hraje v každou celou hodinu krátkou skladbu, a to počínaje 8. a konče 22. hodinou. Skladeb je celkem osmnáct, v celou hodinu se hraje vždy jen jedna a po odehrání všech osmnácti se začíná ve stejném pořadí znovu. Olga a Libor byli na
  14. Bonbóny MO Z6-I-5 2017
    cukriky_10 V plechovce byly červené a zelené bonbóny. Čeněk snědl 2/5 všech červených bonbónů a Zuzka snědla 3/5 všech zelených bonbónů. Teď tvoří červené bonbóny 3/8 všech bonbónů v plechovce. Kolik nejméně bonbónů mohlo být původně v plechovce?
  15. Z9–I–3 - 2017 kafemlýnky2
    robots Roboti Robert a Hubert skládají a rozebírají kafemlýnky. Přitom každý z nich kafemlýnek složí čtyřikrát rychleji, než jej sám rozebere. Když ráno přišli do dílny, několik kafemlýnků už tam bylo složeno. V 7:00 začal Hubert skládat a Robert rozebírat, přes
  16. Hodiny 11
    clocks2_13 Matěj zjišťoval, jak přesně měří věžní hodiny čas. Došel k závěru, že kdyby je nikdo průběžně nenastavoval, ukazovali by zcela přesný čas vždy jednou za 200 dnů. a) Vypočítej, o kolik sekund se čas měřený věžními hodinami liší od přesného času za 1 hodin
  17. Bikvadratická
    eq2_6 Najděte největší přirozené číslo d, které má tu vlastnost, že pro libovolné přirozené číslo n je hodnota výrazu V(n)=n4+11n2−12 dělitelná číslem d.