Rovnice

Vyřeš soustavu rovnic dosazovací, porovnávací i sčítací metodou a proveď zkoušku:
4x+y=5
3x-5y=21

Výsledek

x =  2
y =  -3

Řešení:


4x+y=5
3x-5y=21

4x+y = 5
3x-5y = 21

x = 2
y = -3

Vypočtené naším kalkulátorem soustavy lineárních rovnic.







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto příkladu jsou potřebné tyto znalosti z matematiky:

Máte soustavu rovnic a hledáte kalkulačku soustavy lineárních rovnic?

Další podobné příklady:

  1. Soustava rovníc
    vahy_eq Řešte tento lineární systém-sústavu (dvě lineární rovnice se dvěma neznámými): x+y =36 19x+22y=720
  2. Soustava rovnic
    matrix_10 Vyřeš soustavu rovnic libovolnou metodou a proveď zkoušku: 2(x+y)-3(y+2)= -1 x+2/3y-6=2
  3. Eliminační metoda
    rovnice_1 Řešte soustavu lineárních rovnic eliminační metodou: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  4. Soustava rovnic
    fun_2 Řešte soustavu rovnic: x+4y = -1 y = -1
  5. Soustava rovnic
    rovnica_2 Řešte soustavu rovnic: x+y = 4 x-3y = -6
  6. Soustava rovnic
    linsys Řešte následující soustavu rovnic o třech neznámých 3x+2y+3z=110 5x-y-4z=0 2x-3y+z=0
  7. Sazenice
    jablone Podél silnice bylo vysazeno 250 stromků dvojího druhu. Třešní po 60 Kč za kus a jabloní po 50 Kč za kus. Celá výsadba stála 12800 Kč. Kolik bylo sazenic třešní a kolik jabloní?
  8. Koruny
    penize_1.JPG Žáci čtyř ročníků uspořili dohromady n=45000 korun. Z toho první ročník uspořil jednu třetinu, druhý jednu třetinu zbytku, třetí dvě pětiny dalšího zbytku a čtvrtý zbývající část. Kolik korun uspořil každý ročník ?
  9. Na dvoře
    na_dvore Na dvoře je celkem 35 slepic a králíků. Dohromady mají 94 nohou. Vypočítej (rovnicí) kolik je na dvoře slepic a kolik králíků.
  10. Dva dny
    Fifa-World-Cup Za dva dny bylo prodáno na fotbalový zápas 12600 vstupenek. První den prodali 80% toho co druhý den. Kolik vstupenek se prodalo první den a kolik druhý den?
  11. Třída
    skola_24 V 7. Třídě je o 2 žáky více než v 8. Třídě. Kdyby se počet žáků 7. Třídy zvýšil o 7 a počet žáků 8. Třídy zvýšil o třetinu původního počtu, byl by v obou třídách stejný počet žáků. Kolik žáků je 7. A v 8. Třídě?
  12. Nohy
    rak Rak má 5 párů nohou. Hmyz má 6 nohou. 60 tvorů má celkem 500 nohou. Okolik více je raků než hmyzu?
  13. Hotelove pokoje
    hotel_3 V 45 pokojích bylo ubytování 169 hostů některé pokoje byli trojlužkové a některé pětilužkové. Kolik bylo jakých pokojů?
  14. Tři bratři
    family_13 Tři bratři mají spolu 42 let. Janko je od Petra mladší o 5 let, Peter je od Miška mladší o 2 roky. Kolik let mě každý z nich?
  15. Tři dílny
    workers_24 Ve třech dílnách závodu pracuje 2743 lidí. Ve druhé dílně pracuje o 140 lidí více než v první a ve třetí dílně 4,2-krát více než v druhé. Kolik lidí pracuje v každé dílně?
  16. Góly
    lopta_2 Jarda dal o 18 gólů víc než Karel. Celkem dali 86 gólů. Kolik gólů dal Jarda a kolik Karel?
  17. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?