Sto známek

Je sto dopisních známek a stojí sto korun. Jsou tam známky dvacetiháléřové, korunové, dvojkorunové a pětikorunové. Kolik je kterých? Kolik má úloha řešení?

Výsledek

n =  66

Řešení:

x1= 0.2*10 +1*85+2*4+5*1 = 100
x2= 0.2*15 +1*76+2*8+5*1 = 100
x3= 0.2*15 +1*79+2*4+5*2 = 100
x4= 0.2*20 +1*67+2*12+5*1 = 100
x5= 0.2*20 +1*70+2*8+5*2 = 100
x6= 0.2*20 +1*73+2*4+5*3 = 100
x7= 0.2*25 +1*58+2*16+5*1 = 100
x8= 0.2*25 +1*61+2*12+5*2 = 100
x9= 0.2*25 +1*64+2*8+5*3 = 100
x10= 0.2*25 +1*67+2*4+5*4 = 100
x11= 0.2*30 +1*49+2*20+5*1 = 100
x12= 0.2*30 +1*52+2*16+5*2 = 100
x13= 0.2*30 +1*55+2*12+5*3 = 100
x14= 0.2*30 +1*58+2*8+5*4 = 100
x15= 0.2*30 +1*61+2*4+5*5 = 100
x16= 0.2*35 +1*40+2*24+5*1 = 100
x17= 0.2*35 +1*43+2*20+5*2 = 100
x18= 0.2*35 +1*46+2*16+5*3 = 100
x19= 0.2*35 +1*49+2*12+5*4 = 100
x20= 0.2*35 +1*52+2*8+5*5 = 100
x21= 0.2*35 +1*55+2*4+5*6 = 100
x22= 0.2*40 +1*34+2*24+5*2 = 100
x23= 0.2*40 +1*37+2*20+5*3 = 100
x24= 0.2*40 +1*40+2*16+5*4 = 100
x25= 0.2*40 +1*43+2*12+5*5 = 100
x26= 0.2*40 +1*46+2*8+5*6 = 100
x27= 0.2*40 +1*49+2*4+5*7 = 100
x28= 0.2*45 +1*28+2*24+5*3 = 100
x29= 0.2*45 +1*31+2*20+5*4 = 100
x30= 0.2*45 +1*34+2*16+5*5 = 100
x31= 0.2*45 +1*37+2*12+5*6 = 100
x32= 0.2*45 +1*40+2*8+5*7 = 100
x33= 0.2*45 +1*43+2*4+5*8 = 100
x34= 0.2*50 +1*22+2*24+5*4 = 100
x35= 0.2*50 +1*25+2*20+5*5 = 100
x36= 0.2*50 +1*28+2*16+5*6 = 100
x37= 0.2*50 +1*31+2*12+5*7 = 100
x38= 0.2*50 +1*34+2*8+5*8 = 100
x39= 0.2*50 +1*37+2*4+5*9 = 100
x40= 0.2*55 +1*16+2*24+5*5 = 100
x41= 0.2*55 +1*19+2*20+5*6 = 100
x42= 0.2*55 +1*22+2*16+5*7 = 100
x43= 0.2*55 +1*25+2*12+5*8 = 100
x44= 0.2*55 +1*28+2*8+5*9 = 100
x45= 0.2*55 +1*31+2*4+5*10 = 100
x46= 0.2*60 +1*10+2*24+5*6 = 100
x47= 0.2*60 +1*13+2*20+5*7 = 100
x48= 0.2*60 +1*16+2*16+5*8 = 100
x49= 0.2*60 +1*19+2*12+5*9 = 100
x50= 0.2*60 +1*22+2*8+5*10 = 100
x51= 0.2*60 +1*25+2*4+5*11 = 100
x52= 0.2*65 +1*4+2*24+5*7 = 100
x53= 0.2*65 +1*7+2*20+5*8 = 100
x54= 0.2*65 +1*10+2*16+5*9 = 100
x55= 0.2*65 +1*13+2*12+5*10 = 100
x56= 0.2*65 +1*16+2*8+5*11 = 100
x57= 0.2*65 +1*19+2*4+5*12 = 100
x58= 0.2*70 +1*1+2*20+5*9 = 100
x59= 0.2*70 +1*4+2*16+5*10 = 100
x60= 0.2*70 +1*7+2*12+5*11 = 100
x61= 0.2*70 +1*10+2*8+5*12 = 100
x62= 0.2*70 +1*13+2*4+5*13 = 100
x63= 0.2*75 +1*1+2*12+5*12 = 100
x64= 0.2*75 +1*4+2*8+5*13 = 100
x65= 0.2*75 +1*7+2*4+5*14 = 100
x66= 0.2*80 +1*1+2*4+5*15 = 100








Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto příkladu jsou potřebné tyto znalosti z matematiky:

Další podobné příklady:

  1. Cukr - kvádr
    kocky_cukor Pejko dostal od svého pána kvádr složený z navzájem stejných kostek cukru, kterých bylo nejméně 1000 a nejvíce 2000. Pejko kostky cukru odjeda po jednotlivých vrstvách-první den odjedu jednu vrstvu zepředu, druhý den jednu vrstvu zprava a třetí den jednu
  2. Kdy budu milionář?
    milionar_kedy Jaroslav si pravidelně měsíčně odkládá 250 Eur do banky, která mu vklad úročí 2.3% pa. Vypočítejte kolik měsíců musí Jaroslav šetřit, aby si našetřil 33000 Eur? Inflaci ani daň z úroků, ani změnu úrokových sazeb či krach banky neuvažujte.
  3. Na školu
    ziaci_6 Na školu chodí méně než 500 žáků. Když se seřadí do dvojic, zbyde 1. Stejně tak při seřazení do 3, 4, 5 i 6. Aź po seřazení po sedmi nezbyde ani jeden žák. Kolik žáků chodí na školu?
  4. Máme určitý
    cukriky_13 Máme určitý počet bonbonů a prázdných krabiček. Když dáme bonbony do krabiček po deseti, zbydou 2 bonbony a 8 prázdných krabiček, když po osmi, zbyde 6 bonbonů a 3 krabičky. Kolik bonbonů a prázdných krabiček zbyde, když dáme bonbony do krabiček po devíti
  5. Slepice a králíky
    pipky Na dvoře byly slepice a králíky. Spolu měli 31 hlav a 94 noh. Kolik bylo slepic a kolik zajíců?
  6. Otec a syn
    father_son Otec se synem mají spolu 80 let. Syn je o 28 let mladší než otec. Kolik let má syn?
  7. Vysvědčení
    vysvedcenie_1 Ivor dostal na začátku školního roku 5× patku. Kolik krát musí nyní dostat po sobě jednotek, aby dostal na konci roku na vysvědčení dvojku?
  8. Kočky
    cats Dvě kočky chytili za dva dny dvě myši. Kolik myší chytí 6 koček za 6 dní?
  9. Trojice
    3Soldiers 56 dětí se seřadilo do trojic. Kolik dětí nevytvořilo trojici?
  10. Aritmetická
    arithmetic_seq V aritmetické posloupnosti je a1=-1, d=4. Kolikáty člen je roven čísli 203?
  11. Hrací kostka
    dices Kolikrát je nutné hodit hrací kostkou, aby pravděpodobnost hodu alespoň jedné six byla větší než 90%?
  12. Diofantovská rovnice
    diofantos V množině celých čísel (Z) řešte rovnici: ? Výsledek zapište jako násobek celočíselného parametru ?, (parametr t = ...-2, -1,0,1,2,3... pokud má rovnice nekonečně mnoho řešení)
  13. Diofant 2
    1diofantos Je rovnice   ? řešitelná na množině celých čísel Z?
  14. Omyl
    minus Božena se při počítání ve škole zmýlila. Namísto toho, aby číslo 41 přičetla, odečetla ho. Jaký je rozdíl mezi jejím výsledkem a správným výsledkem?
  15. Neznáma
    UnknownX Pokud k neznámému číslu přičteme 21, výsledek vydělíme 6 a následně odečteme 51, dostaneme opět neznámé číslo. Určete neznámé číslo...
  16. Opice
    monkey Do studny hluboké 37 metrů spadla opice. Každý den se jí daří vyškrábat se 3 metry, v noci však spadne zpět o 2 metry. Na který den se opice dostane ze studny?
  17. Dělitelnost
    divisibility Je číslo 314082 dělitelné číslem 6?