Z9-I-6 MO 2017

Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.


Výsledek

a1 =  1
a2 =  -5
a3 =  -0.75
a4 =  -0.25

Řešení:

Textové řešení a1 =
Textové řešení a2 =
Textové řešení a3 =
Textové řešení a4 =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

11 komentářů:
#1
Dr Math
skuste za a například tato čísla a dostanete 4 uspořádání .... (jako v příkladu)
a1 = 1
a2 = -5
a3 = -0.75
a4 = -0.25

Totiž číselnou osu dělí zlomové body - D = {-1, -0.5, 0}, cize na 4 casti .... Ine mozne uspořádání není možné dostat. V zlomových bodech dochází k rovnosti bodů ....

#2
Žák
Rovnost není považována za řešení?

#3
Žák
Co znamená to D?

#4
Dr Math
D je mnozina "a" kde dochadza k rovnosti hodnoty troch vyrazov - a, 2a, 3a+1

#5
Žák
Já to nechápu. Prosím může mi to někdo vysvětlit.

7 měsíců  1 Like
#6
Amálie
Není mi jasné zadání, natož řešení. Například co prosím znamená uvázat navzájem různé body? Našel by se někdo kdo by to celé prosím vysvětlil?

7 měsíců  1 Like
#7
Žák
Já také nachápu ani zadání.

#8
Dan
Mužu, prosím, nějaký popis. (teorii)

#9
Dr Math
zadání se da vysvetlit tak ze najděte nějaké hodnoty "a" pro ktere jsou tři čísla a, 2a, 3a + 1 spořádaně ve třech různých pořadích .... např. pro a = 1 su ty tři cisla 1,2,4 a su uspořádaně vzestupně. pro a=-5 bude poradi zase jine vid reseni...

#10
Žák
Takže výsledkem může být každé číslo kromě 0,-2?

#11
Žák
*o,-1

avatar









K vyřešení tohoto příkladu jsou potřebné tyto znalosti z matematiky:

Další podobné příklady:

  1. Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čí
  2. Osmistěn
    8sten Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také se
  3. Čtvercova sít
    sit Čtvercova síť se skladá ze čtverců se stranou delky 1cm. Narysujte do ní alespoň tři různe obrazce takové, aby každý měl obsah 6cm2 a obvod 12cm a aby jejich strany splývaly s přímkami síťe.
  4. Mnohonožka Z6–I–3
    mnohonozky.JPG Mnohonožka Mirka sestává z hlavy a několika článků, na každém článku má jeden pár nohou. Když se ochladilo, rozhodla se, že se obleče. proto si na třetím článku od konce a potom na každém dalším třetím článku oblékla ponožku na levou nožku. Podobně si na
  5. Z9-I-4
    numbers_30 Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devíti
  6. Myška Hryzka
    myska_hryzka Myška Hryzka našla 27 stejných krychliček sýra. Nejdříve si z nich poskládala velkou krychli a chvíli počkala, než se sýrové krychličky k sobě přilepily. Potom z každé stěny velké krychle vyhryzla střední krychličku. Poté snědla i krychličku, která byla v
  7. Komora
    socks V komoře, kde se rozbilo světlo a vše z ní musíme brát naslepo, máme ponožky čtyř různých barev. Pokud si chceme být jisti, že vytáhneme alespoň dvě bílé ponožky, musíme je z komory přinést 28. Abychom měli takovou jistotu pro šedé ponožky, musíme je přin
  8. Štedrý den
    stedryd V nepřestupném roce bylo 53 nedělí. Na jaký den týdne připadl Štedrý den?
  9. Šestiúhelník nepravidelný
    6uholnik_nepravidelny Na obrázku je čtverec ABCD, čtverec EF GD a obdélník HIJD. Body J a G leží na straně CD, přičemž platí |DJ| < |DG|, a body H a E leží na straně DA, přičemž platí |DH| < |DE|. Dále víme, že |DJ| = |GC|. Šestiúhelník ABCGF E má obvod 96 cm, šestiúhelník EF
  10. Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  11. Pan Cuketa
    cuketa Pan Cuketa měl obdelníkovou zahradu. jejíž obvod byl 28 metrů. Obsah celé zahrady vyplnily právě čtyři čtvercové záhony, jejichž rozměry v metrech byly vyjádřeny celými čísly. Určete, jaké rozměry mohla mít zahrada. najděte všechny možnosti a zapište n j
  12. Bazén
    praded Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hrano
  13. Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  14. Ovce a beran
    sheep Když pán Beran zakladal chov, měl bílych ovci o 8 více nez černých. V současnosti má bílych ovci čtyrikrát více než na začátku a černých třikrát více než na začátku. Bílych ovcí je teď o 42 více než černých. Kolik nyní pan Beran chová bílych a černých ovc
  15. MO - trojúhelníky
    metal Na stranách AB a AC trojúhelníku ABC lěží po řadě body E a F, na úsečce EF leží bod D. Přmky EF a BC jsou rovnoběžné a součastně platí FD : DE = AE : EB = 2:1. Trojúhelník ABC má obsah 27 hektarů a úsečkami EF, AD a DB je rozdělen na čtyři části . Určete
  16. Pětiúhelník
    5gon_1 Uvnitř pravidelného pětiúhelníku ABCDE je bod P takový, že trojúhelník ABP je rovnostranný. Jak velký je úhel BCP? Udělej si náčrtek
  17. Z9–I–3
    ball_floating_water Julince se zakutálel míček do bazénu a plaval ve vodě. Jeho nejvyšší bod byl 2 cm nad hladinou. Průměr kružnice, kterou vyznačila hladina vody na povrchu míčku, byl 8 cm. Určete průměr Julinčina míčku.