Pilíř

Určitě objem pilíře tvaru pravidelného čtyřbokého komolého jehlanu, jestliže jeho čtvercové postavy mají strany a = 19, b = 27 a výška pilíře je v = 48.

Výsledek

V =  25648

Řešení:

Textové řešení V =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Chcete proměnit jednotku plochy? Hledáte statistickou kalkulačku?

Další podobné příklady:

  1. 4b jehlan
    jehlan_1 Vypočítejte objem a povrch pravidelného čtyřbokého jehlanu, výška je 15 cm a délka hrany základny 13 cm.
  2. 4-boký jehlan v2
    krychle_3_jehlany Vypočítejte objem a povrch pravidelného čtyřbokého jehlanu, jeli obsah podstavy 20 cm2. Odchylka boční hrany od roviny podstavy je 60 stupňů.
  3. Trojboký jehlan
    tetrahedron1 Vypočítejte objem a povrch pravidelného trojbokého jehlanu, jehož výška je stejná jako délka hrany podstavy 10 cm.
  4. 4-boký jehlan v1
    ihlany Vypočítej objem a povrch pravidelného 4bokého jehlanu, jehož podstavna hrana je 4 cm. Odchylka bočni steny od roviny je 60 stupňů.
  5. Jehlan
    jehlan_1 Vypočti objem a povrch jehlanu o hraně a výšce a = 26 cm. v = 3 dm.
  6. Střecha
    pyramid_roof 1/3 plochy střechy ve tvaru pravidelného čtyřbokého jehlanu s hranou podstavy 9 m a výškou 4 m je už pokryta krytinou. Kolik třeba ještě pokrýt?
  7. Věž
    6 Kolik metrů čtverečních je potřeba na pokrytí věže tvaru pravidelného čtyřbokého jehlanu o podstavné hraně 10 metrů, je-li odchylka boční hrany od roviny podstavy 68°? Při pokrytí se počítá s odpadem 10%.
  8. Jehlan
    jehlan Je dán jehlan, podstava a = 5 cm, výška v = 8 cm; a) urči odchylku roviny ABV od roviny podstavy b) odchylku protějších bočních hran
  9. Střecha domu
    roof_pyramid_2 Střecha domu má tvar pravidelného čtyřbokého jehlanu s podstavnou hranou 17 m. Kolik m2 je třeba na její pokrytí, jestliže sklon střechy 57° a na spoje a odpad počítáme 11% plechu navíc?
  10. Věž
    pyramid Vypočtěte povrch pravidelného čtyřbokého jehlanu, jehož podstavná hrana měří 6 cm, je-li odchylka roviny boční stěny od roviny podstavy 50 stupňů.
  11. Čtyřboký jehlan
    jehlanctyrboky Jaký je povrch pravidelného čtyřbokého jehlanu, když je podstavná hrana a=21 a výška v=16?
  12. Průsečík přímky a roviny
    jehlan3 Je dán pravidelný čtyřboký jehlan ABCDV, uvnitř jeho hrany AV je bod M, na prosloužené úsečce DC za bod C je bod N. Sestrojte průsečnici roviny MNV s rovinou BCV a průsečík přímky MN a roviny BCV.
  13. 4b jehlan
    pyramid_regular Pravidelný čtyřboký jehlan má podstavnou hranu a = 17, pobočnou hranu b = 32. Jakou má výšku?
  14. Věž
    HexagonalPyramid_4 Vrchol věže je pravidelný šestiboký jehlan o podstavné hraně 12.6 metrů a výšce 8.5 metrů. Kolik m2 plechu je třeba na pokrytí vrcholu věže, počítáme-li na odpad 10%?
  15. Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čí
  16. Čtvercova sít
    sit Čtvercova síť se skladá ze čtverců se stranou delky 1cm. Narysujte do ní alespoň tři různe obrazce takové, aby každý měl obsah 6cm2 a obvod 12cm a aby jejich strany splývaly s přímkami síťe.
  17. Šestiúhelník nepravidelný
    6uholnik_nepravidelny Na obrázku je čtverec ABCD, čtverec EF GD a obdélník HIJD. Body J a G leží na straně CD, přičemž platí |DJ| < |DG|, a body H a E leží na straně DA, přičemž platí |DH| < |DE|. Dále víme, že |DJ| = |GC|. Šestiúhelník ABCGF E má obvod 96 cm, šestiúhelník EF