C – I – 3 MO 2018

Nechť a, b, c jsou kladná reálná čísla, jejichž součet je 3, a každé z nich je nejvýše 2.

Dokažte, že platí nerovnost:

a2 + b2 + c2 + 3abc < 9

Výsledek

d =  1

Řešení:

Textové řešení d =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

2 komentáře:
#1
Dr Math
Návodné a doplňující úlohy:

N1. Pro reálná čísla se součtem 3 platí navíc a2 + b2 + c2 = 5. Jaké hodnoty může nabývat výraz ab+bc+ca? [Jelikož (a+b+c)2 = a2 +b2 +c2 + 2(ab+bc+ca), je nutně ab + bc + ca = 2. Hodnota je dosažitelná díky trojici (2, 1, 0).]

N2. Nezáporná reálná čísla a, b, c jsou všechna nejvýše rovna 1. Dokažte, že 3abc <= a + b + c. Kdy nastane rovnost? [Upravíme na a(1 − bc) + b(1 − ac) + c(1 − ab) >= 0, výrazy v závorkách jsou nezáporné. Rovnost nastane, právě když buď a = b = c = 0, nebo a = b = c = 1.]

D1. Dokažte, že pro reálná čísla a, b, c platí a2 +b2 +c2 >= ab+bc+ca. Kdy nastane rovnost? [Nerovnost je ekvivalentní s (a − b)2 + (b − c)2 + (c − a)2 = 0, která jistě platí. Rovnost nastane jedině v případě a = b = c.]

D2. Reálná čísla a, b, c mají součet 3. Dokažte, že 3 = ab + bc + ca. Kdy nastane rovnost? [Plyne z rovnosti 9 = (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca) a z předešlé úlohy. Rovnost nastane jedině v případě a = b = c = 1.]

D3. Dokažte, že pro libovolná reálná čísla x, y, z platí nerovnost x2 + 5y2 + 4z2 = 4y(x + z), a zjistěte, kdy nastane rovnost. [Anulujte pravou stranu dané nerovnosti a upravte ji následně do tvaru (x2 − 4xy + 4y2 ) + (y2 − 4yz + 4z2 ) = 0, kde na levé straně je nezáporný součet (x − 2y)2 + (y − 2z)2 . Rovnost zde nastane, právě když platí (x, y, z) = (4c, 2c, c), kde c je libovolné reálné číslo.]

D4. Nechť a, b, c jsou délky stran trojúhelníku. Dokažte, že platí nerovnost 3a2 + 2bc > 2ab + 2ac. [Danou nerovnost upravte na tvar a 2 −(b−c)2 + (a−b)2 + (a−c)2 > 0 a rozdíl prvních dvou druhých mocnin nahraďte příslušným součinem.]

#2
Vítek
Řešení je chybné, součet a + b + c musí být 3.

avatar









Další podobné příklady:

  1. Čtverec
    square_1 Body A[-9,6] a B[-5,-3] jsou sousedními vrcholy čtverce ABCD. Vypočítejte obsah čtverce ABCD.
  2. Převod
    ozubene_kolesa Dvě ozubená kola, zapadající do sebe, mají převod 2:3. Středy odidvoch kol jsou od sebe vzdáleny 82 cm. Jaké poloměry mají kola?
  3. Pravoúhlý trojúhelník Alef
    r_triangle area pravoúhlého trojúhelníku je 294 cm2 a jeho přepona má délku 35 cm. Jaké jsou délky jeho odvěsen?
  4. Obdélník
    rectangle_inscribed_circle Obdélník je 29 cm dlouhý a 47 cm široký. Urči poloměr kružnice opsané obdélníku.
  5. Čísla
    ten Určete počet všech přirozených čísel menších než 4183444, pokud každé je současně dělitelné 29, 7, 17. Jaký je jejich součet?
  6. Krkavci
    krkavec V pohádce o sedmero krkavcích bylo sedm bratrů, z nichž každý se narodil přesně o 2.5 roků po předchozím. Když byl nejstarší z bratrů právě 2-krát starší než nejmladší matka všechny zaklela. Kolik let bylo sedmero bratrům krkavcům, když je jejich matka za
  7. Opice
    monkey Do studny hluboké 29 metrů spadla opice. Každý den se jí daří vyškrábat se 3 metry, v noci však spadne zpět o 2 metry. Na který den se opice dostane ze studny?
  8. Prémie
    moeny Hrubá mzda zaměstnance byla 14712 Kč včetně 22% prémie. Kolik Kč byly prémie?
  9. Čtvercova sít
    sit Čtvercova síť se skladá ze čtverců se stranou delky 1cm. Narysujte do ní alespoň tři různe obrazce takové, aby každý měl obsah 6cm2 a obvod 12cm a aby jejich strany splývaly s přímkami síťe.
  10. Úsečky
    segments Úsečky délek 67 cm a 3.1 dm máme rozdělit na stejné díly tak, aby jejich délka v centimetrech byla vyjádřena celým číslem. Kolika způsoby je můžeme dělit?
  11. Z5–I–1 MO 2017
    rohliky_2 Honzík dostal kapesné a chce si za něj koupit něco dobrého. Kdyby si koupil čtyři koláče. Zbylo by mu 5kč. Kdyby si chtěl koupit pět koláčů, chybělo by mu 6kč. Kdyby si koupil dva koláče a tři koblihy, utratil by celé kapesné beze zbytku. Kolik stoji jedn
  12. Centy
    cents_1 Julka má o 3 centy více než Hugo. Celkem maji 27 centů. Kolik centů má Julka a kolik Hugo?
  13. Lentilka
    lentilky.JPG Lentilka udělala 31 palačinek. 8 nenaplnila ničím, 14 palačinek naplnila jahodovým džemem, 16 naplnila tvarohem. a) Kolik udělala Lentilka jahodovo-tvarohových palačinek? Maksík snědl 4 jahodovo-tvarohové a všechny čistě jahodové palačinky. Mikulaš sněd
  14. Králici
    kralici V králíkárně je 48 strakatých králíků. Hnědých je o 23 méně než strakatých a bílých je 8-krát méně než strakatých. Kolik je v králíkárně králíků?
  15. Kroužek v škole
    venn 27 žáků navštěvuje nějaký kroužek, taneční kroužek navštěvuje 14 žáků, sportovní 21 žáků a dramatický 16 žáků. Taneční a sportovní navštěvuje 9 žáků, taneční a dramatický 6 žáků, sportovní a dramatický 11 žáků. Kolik žáků navštěvuje všechny 3 kroužky?
  16. Peníze a obchod
    img-thing Peter zaplatil v obchodě o 3 eura více, než je polovina částky, kterou měl při příchodu do obchodu. Při odchodu mu zůstalo 10 eur. Kolik eur měl při příchodu do obchodu?
  17. Tři kočky
    three_cats Pokud tři kočky sežerou tři myši během tří minut, za jaký čas 210 koček sežere 210 myší?