Doplnění na čtverec

Vyřešte kvadratickou rovnici:

m2 = 4m + 20 pomocí metody doplnění na čtverec nebo doplnění do čtverce.

Výsledek

m1 =  6.899
m2 =  -2.899

Řešení:

Textové řešení m1 =
Textové řešení m2 =

Výpočet overte naším kalkulátorem kvadratických rovnic.








Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto příkladu jsou potřebné tyto znalosti z matematiky:

Hledáte pomoc s výpočtem kořenů kvadratické rovnice?

Další podobné příklady:

  1. V daném
    rectangles_11 V daném obdélníku je délka o 12 m větší než šířka. Zmenšíme-li délku o 10 m a šířku zvětšíme o 2 m dostaneme čtverec. Plošný obsah původního obdélníku je o 300 m2 větší než plošný obsah čtverce. Určete rozměry obdélníku.
  2. Kvádr
    cuboid_1 Kvádr má povrch 9294 cm2, délky jeho hran jsou v poměru 2:3:4. Vypočítej objem kvádru.
  3. Pravoúhlý trojúhelník
    righttriangle Pro odvěsny pravoúhlého trojúhelníku platí a:b = 6:8. Přepona má délku 61 cm. Vypočítejte obvod a obsah tohoto trojúhelníku.
  4. Kruh v rovině
    circle_axes_1 Najděte parametry kruhu v rovině - souřadnice středu a poloměr: ?
  5. Kvádr
    kvader_2 Kvádr má povrch 42 dm2 a jeho rozměry jsou 3 dm a 2 dm. Jaký je třetí rozměr?
  6. Lichoběžník MO
    right_trapezium Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé. Vypočítejte obvod a obsah takéhoto lichobežníka.
  7. Bazén
    pool Pokud do bazénu přitéká voda současně dvěma přívody, naplní se celý za 18 hodin. Jedním přívodem se naplní o 10 hodin později než druhým. Za jak dlouho se naplní bazén jednotlivými přívody zvlášť?
  8. Kořen
    root_quadrat Kořen rovnice ? je: ?
  9. Kvádr
    cuboid Kvádr s hranou a=12 cm a tělesových úhlopříčkou u=38 cm má objem V=7200 cm3. Vypočítejte velikosti ostatních hran.
  10. Pravoúhlý trojúhelník Alef
    r_triangle area pravoúhlého trojúhelníku je 294 cm2 a jeho přepona má délku 35 cm. Jaké jsou délky jeho odvěsen?
  11. Z9–I–3
    ball_floating_water Julince se zakutálel míček do bazénu a plaval ve vodě. Jeho nejvyšší bod byl 2 cm nad hladinou. Průměr kružnice, kterou vyznačila hladina vody na povrchu míčku, byl 8 cm. Určete průměr Julinčina míčku.
  12. Pravouhlý
    r_triangle_1 Určitě úhly pravoúhlého trojúhelníku, s přeponou c a odvesnamy a, b; jestliže platí: ?
  13. Kosočtverec a vepsaná
    rhombus_2 Kosočtverec má stranu a=6 cm, poloměr vepsané kružnice je r=2 cm. Vypočtěte délky obou úhlopříček.
  14. 3uhelník obsah
    right_triangle_1 Vypočtěte obsah pravoúhlého trojúhelníku, jehož delší odvěsna je o 6 dm kratší než přepona a o 3 dm delší než kratší odvěsna.
  15. Tečny
    tangents Ke kružnici s průměrom 178 cm jsou z bodu W vedené dvě tečny. Vzdálenost obou dotykových bodů je 74 cm. Vypočítejte vzdálenost bodu W od středu kružnice.
  16. Obdélník SŠ
    rectangle Obvod obdélníku je 224 km a délka jeho úhlopříčky je 79.51 km. Určitě rozměry obdélníku.
  17. Trolejbus
    trolejbus_ba_1 Linka trolejbusu číslo 207 měří 20 km. Pokud by trolejbus jel rychleji o 9 km/h, cesta tam a spať by mu trvala o 20 minut méně. Vypočítejte rychlost trolejbusu a kolik času mu trvá cesta tam i spát.