Matematická olympiáda + přirozená čísla - příklady a úlohy

Úkoly MO nejsou lehké, ani pro dospělé lidi. Zároveň věříme, že správné řešení, které je zde publikované téměř na jeden klik poslouží jen na inspiraci. V reálném životě každý totiž řeší úkoly, které nikdo jiný před tím neřešil.
  
Nenechte se odradit, když neobjevíte hned řešení. Experimentujte, kreslete si, "hrajte se" s úlohou. Někdy pomůže podívat se do nějaké knížky, kde najdete podobné úkoly vyřešeny, jindy se může stát, že najednou o tři dny "z ničeho nic" na řešení přijdete.

Počet nalezených příkladů: 56

  • Cifra
    olympics_3 Jaké je poslední číslo 2016-té mocniny čísla 2017?
  • Rok 2018 jak číslo
    new_year Součin tří kladných čísel je 2018. Která jsou to čísla?
  • C – I – 6 MO 2018
    numbers_49 Najděte všechna trojmístná čísla n s třemi různými nenulovými číslicemi, která jsou dělitelná součtem všech tří dvojmístných čísel, jež dostaneme, když v původním čísle vyškrtneme vždy jednu číslici.
  • MO C - 2017
    math_mo Najděte nejmenší čtyřmístné číslo abcd takové, že rozdíl (ab)2−(cd)2 je trojmístné číslo zapsané třemi stejnými číslicemi.
  • Z7-I-4 hvězdičky 4949
    hviezdicky_mo Napište namísto hvězdiček, aby následující zápis součinu dvou čísel byl platný: ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 9 4 9 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗ ∗
  • Hvězdičková rovnice
    numbers_37 Napište namísto hvězdiček cifry tak, aby součet vyplněných cifer byl lichý a aby platila uvedená rovnost: 42 · ∗8 = 2 ∗∗∗
  • Hodinář
    clock-night-schr Starý hodinář má ve své sbírce zvláštní digitální budík, který zvoní vždy, když součet cifer, který budík ukazuje, se rovná číslu 21. Zjisti, ve kterých časech bude budík zvonit. Jaký je jejich počet? Vypiš všechny možnosti ...
  • MO Z6–I–1 - 2017 - Anička
    numbs_9 Anička a Blanka si napsaly každá jedno dvojmístné číslo, které začínalo sedmičkou. Dívky si zvolily různá čísla. Poté každá mezi obě číslice vložila nulu, takže jim vzniklo trojmístné číslo. Od něj každá odečetla svoje původní dvojmístné číslo. Výsledek j
  • Prvočísla - 6c
    numberline_1 Najít všechna šesticiferná prvočísla, která obsahují každou z číslic 1,2,4,5,7 a 8 právě jednou. Kolik jich je?
  • Z9–I–3 MO 2019
    reciprocal Pro která celá čísla x je podíl (x+11)/(x+7) celým číslem? Najděte všechna řešení.
  • Z5–I–6 MO 2017
    prime_1 Na stole leželo osm kartiček s čísly 2, 3, 5, 7, 11, 13, 17, 19. Ferda si vybral tři kartičky. Sečetl na nich napsaná čísla a zjistil, že jejich součet je o 1 větší než součet čísel na zbylých kartičkách. Které kartičky mohly zůstat na stole? Určete všech
  • Ovce 3
    sheep_1 Kuba se domluvil s bačou, že se mu bude starat o ovce. Bača Kubovi slíbil, že po roce služby dostane dvacet zlatých a k tomu jednu ovci. Jenže Kuba dal výpověď, právě když uplynul sedmý měsíc služby. I tak ho Bača spravedlivě odměnil a zaplatil mu pět zla
  • Dědo MO Z5–I–5 2019
    jablone Dědeček má v zahradě tři jabloně a na nich celkem 39 jablek. Jablka rostou jen na osmi větvích: na jedné jabloni plodí dvě větve, na dvou jabloních plodí po třech větvích. Na různých větvích jsou různé počty jablek, ale na každé jabloni je stejný počet ja
  • Richardove čísla Z8-I-2 2019
    numbers2 Richard si pohrával s dvěma pětimístnými čísly. Každé sestávalo z navzájem různých číslic, které u jednoho byly všechny liché a u druhého všechny sudé. Po chvíli zjistil, že součet těchto dvou čísel začíná dvojčíslím 11 a končí číslem 1 a že jejich rozdíl
  • Samopočet
    nisa_Samopočet Samopočet funguje přesně jako kalkulačka. Hostinský chtěl na samopočte sečíst několik trojmístných přirozených čísel. Na první pokus dostal výsledek 2224. Pro kontrolu sečetl tato čísla znovu a vyšlo mu 2198. Proto sečetl tato čísla ještě jednou a nyní do
  • MO Z6 I-3 2017 sklenice
    MO_Z6_2017 Honza měl 100 stejných zavařovacích sklenic, z kterých si stavěl trojboké pyramidy. Nejvyšší poschodí pyramidy má vždy jednu sklenici, druhé poschodí shora představuje rovnostranný trojúhelník, jehož strana sestává ze dvou sklenic, atd. Příklad konstrukce
  • MO C–I–1 2018
    numbers_49 Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými.
  • Z5–I–1 MO 2018
    fixy_1 Míša má pět pastelek. Vojta jich má méně než Míša. Vendelín jich má tolik, kolik Míša a Vojta dohromady. Všichni tři dohromady mají sedmkrát více pastelek, než má Vojta. Kolik pastelek má Vendelín?
  • Z5–I–4 MO 2018
    stol_2 V klubovně byly jen židle a stůl. Každá židle měla čtyři nohy, stůl byl trojnohý. Do klubovny přišli skauti. Každý si sedl na svou židli, dvě židle zůstaly neobsazené a počet nohou v místnosti byl 101. Kolik židlí bylo v klubovně?
  • Zvonkohra
    Zvonkohra.JPG Zvonkohra na nádvoří hraje v každou celou hodinu krátkou skladbu, a to počínaje 8. a konče 22. hodinou. Skladeb je celkem osmnáct, v celou hodinu se hraje vždy jen jedna a po odehrání všech osmnácti se začíná ve stejném pořadí znovu. Olga a Libor byli na

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.



Viz také více informacií na Wikipedii.