Matematická olympiáda + dělitelnost - příklady a úlohy

Počet nalezených příkladů: 36

  • Slávkine čísla
    olympics Slávka si napsala barevnými fixy čtyři různé přirozená čísla: červené, modré, zelené a žluté. Když červené číslo vydělí modrým, dostane jako neúplný podíl zelené číslo a žluté představuje zbytek po tomto dělení. Když vydělí modré číslo zeleným, vyjde její
  • Určete dvojice
    cisla Určete všechny dvojice (m, n) přirozených čísel, pro něž platí m + s(n) = n + s(m) = 70, kde s(a) značí ciferný součet přirozeného čísla a.
  • Z6 – I – 6 MO 2019
    numbers Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Mezi tro
  • Z5–I–4 MO 2019
    2019 Vojta začal vypisovat do sešitu číslo letošního školního roku 2019202020192020. . . A tak pokračoval pořád dál. Když napsal 2020 číslic, přestalo ho to bavit. Kolik tak napsal dvojek?
  • MO Z9-I-6 2019
    triangles Kristýna zvolila jisté liché přirozené číslo dělitelné třemi. Jakub s Davidem pak zkoumali trojúhelníky, které mají obvod v milimetrech roven Kristýnou zvolenému číslu a jejichž strany mají délky v milimetrech vyjádřeny navzájem různými celými čísly. Jaku
  • MO 2019 Z9–I–5
    olympics Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka vy
  • Gramáže v kuchařce (Matik)
    vahy2 V kuchařce od Matěje Matemakaka se psalo: největší společný dělitel gramáže mouky a gramáže cukru je 15, největší společný dělitel gramáže cukru a gramáže citronové kůry je 6, součin gramáže cukru a gramáže citrónové kůry je 1800, nejmenší společný násobe
  • Richardove čísla Z8-I-2 2019
    numbers2 Richard si pohrával s dvěma pětimístnými čísly. Každé sestávalo z navzájem různých číslic, které u jednoho byly všechny liché a u druhého všechny sudé. Po chvíli zjistil, že součet těchto dvou čísel začíná dvojčíslím 11 a končí číslem 1 a že jejich rozdíl
  • MO Z8-I-2 2012
    numbers Číslo X je nejmenší takové přirozené číslo, jehož polovina je dělitelná třemi, třetina dělitelná čtyřmi, čtvrtina dělitelná jedenácti a jeho polovina dává zbytek 5 po dělení sedmi. Najděte toto číslo.
  • MO C-I-3 2019
    numbers Určete všechny dvojice přirozených čísel A a B, pro které platí, že součet dvojnásobku nejmenšího společného násobku a trojnásobku největšího společného dělitele přirozených čísel A a B je roven jejich součinu.
  • Z9–I–3 MO 2019
    reciprocal Pro která celá čísla x je podíl (x+11)/(x+7) celým číslem? Najděte všechna řešení.
  • MO B 2019 ukol 2
    olympics Přirozené číslo n má aspoň 73 dvojmístných dělitelů. Dokažte, že jedním z nich je číslo 60. Uveďte rovněž příklad čísla n, které má právě 73 dvojmístných dělitelů, včetně náležitého zdůvodnění.
  • Prvočísla - 6c
    numberline Najít všechna šesticiferná prvočísla, která obsahují každou z číslic 1,2,4,5,7 a 8 právě jednou. Kolik jich je?
  • Rok 2018 jak číslo
    new_year Součin tří kladných čísel je 2018. Která jsou to čísla?
  • C – I – 6 MO 2018
    numbers Najděte všechna trojmístná čísla n s třemi různými nenulovými číslicemi, která jsou dělitelná součtem všech tří dvojmístných čísel, jež dostaneme, když v původním čísle vyškrtneme vždy jednu číslici.
  • Z7–I–5 MO 2018
    ruze V zahradnictví Rose si jedna prodejna objednala celkem 120 růží v barvě červené a žluté, druhá prodejna celkem 105 růží v barvě červené a bílé a třetí prodejna celkem 45 růží v barvě žluté a bílé. Zahradnictví zakázku splnilo, a to tak, že růží stejné bar
  • MO C–I–1 2018
    numbers Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými.
  • Z7–I–1 MO 2018
    numbers2 Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné číslo poskládané z těchto kartiček je dělitelné šesti. Navíc lze z těchto kartiček poskládat trojmístné číslo
  • Z9 – I – 6 2018 MO
    numbers2 Přirozené číslo N nazveme bombastické, pokud neobsahuje ve svém zápise žádnou nulu a pokud žádné menší přirozené číslo nemá stejný součin číslic jako číslo N. Karel se nejprve zajímal o bombastická prvočísla a tvrdil, že jich není mnoho. Vypište všechna d
  • Z7–I–4 2018 MO Betka
    gears_mo Karel si hrál s ozubenými koly, která byla sestavena do soukolí. Když zatočil jedním kolem, točila se všechna ostatní. První kolo mělo 32 a druhé 24 zubů. Když se třetí kolo otočilo (je uprostřed soukolí) přesně osmkrát, druhé kolo udělalo pět otáček a čá

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.



Matematická olympiáda - příklady. Dělitelnost - příklady.