Objem tělesa + kvadratická rovnice - příklady a úlohy

Počet nalezených příkladů: 23

  • Válec 24
    valec2_1 Válec má obsah 300 m čtverečních, přičemž výška válce je 12 m . vypočítejte objem tohoto válce.
  • Prodlouží-li
    cube_in_sphere Prodlouží-li se délky hran krychle o 5 cm, zvětší se její objem o 485 cm3. Určete povrch původní i zvětšené krychle.
  • Stěnové úhlopříčky
    cuboid Stěnové úhlopříčky kvádru mají velikosti √29cm, √34cm, √13cm. Vypočtěte povrch a objem kvádru.
  • Nádoba - kužel
    cone-upside Uzavřená nádoba ve tvaru kužele stojící na své podstavě je naplněna vodou tak, že hladina se nachází 8 cm od vrcholu. Po otočení nádoby o 180 stupňů – stojí na vrcholu – je hladina vzdálena 2 cm od podstavy. Jak vysoká nádoba je?
  • Tajný poklad
    max_cylinder_pyramid Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
  • Cukrářka 2
    cukrrka Cukrářka potřebuje z cukrářské hmoty ve tvaru koule o poloměru 25cm vyřezat ozdobu ve tvaru kužele. Určete poloměr podstavy ozdoby a (a výšku h) tak, aby se na výrobu ozdoby použilo co nejvíce hmoty.
  • Objem kvádru
    cuboid_19 Pokud jsou plochy tří přilehlých stěn kvádru 8 cm2, 18 cm2 a 25 cm2, najděte objem kvádru.
  • Kvádr
    cuboid_18 Kvádr má objem 40 cm3. Kvádr má celkovou plochu 100 cm čtverečních. Jedna hrana kostky má délku 2 cm. Najděte délku úhlopříčky kvádru. Dejte svou odpověď správně na 3 desetinná místa.
  • Kvádr 38
    cuboid_10 Kvádr má objem 250 cm3, povrch 250 cm2 a jednu stranu 5cm. Jak vypočítám zbývající strany?
  • Stěny kvádru
    cuboid_9 Vypočítejte objem kvádru, pokud jeho různé stěny mají obsahy 195cm², 135cm² a 117cm².
  • Kvádr
    kvader11_2 Vypočítej objem kvádru o čtvercové podstavě a výšce 6 cm, obsah povrchu kvádru je 48 cm2.
  • Bazén
    basen_5 Zjistěte rozměry otevřeného bazénu se čtvercovým dnem o objemu 32 m3 tak, aby na vyzdění jeho stěn a dna bylo třeba nejmenší množství materiálu.
  • Kvádr
    kvader11 Velikosti hran kvádru jsou v poměru 2:3:5. Nejmenší stěna kvádru má obsah 54 cm2 . Vypočítejte povrch a objem kvádru.
  • Papír
    box Tvrdý papír ve tvaru obdélníku má rozměry 60 cm a 28 cm. V rozích se odstřihnou stejné čtverce a zbytek se ohne do tvaru otevřené krabice. Jak dlouhá musí být strana odříznutých čtverců, aby objem krabice byl největší?
  • Hranol 6b
    hranol6b Pravidelný šestiboký hranol má povrch 140 cm2, výšku 5 cm. Vypočítejte jeho objem.
  • Kupola
    sphere_segment Klenutý stadion má tvar kulového segmentu s poloměrem základny 150 m. Klenba musí obsahovat objem 3500000 m³. Určitě výšku stadionu uprostřed (zaokrouhlujte na nejbližší desetinu metru).
  • Kostky - objemy
    cube_2 Hrana druhé kostky je o 2 cm větší, než hrana první kostky. Rozdíl objemů kostek je 728 cm3. Vypočítejte velikosti hran obou kostek.
  • Bazén
    basen V bazénu tvaru kvádru je 299 m3 vody. Určete rozměry dna, je-li hloubka vody 282 cm a jeden rozměr je o 4,7 m větší než druhy.
  • Kvádr
    cuboid_1 Kvádr má povrch 1577 cm2, délky jeho hran jsou v poměru 4:1:2. Vypočítej objem kvádru.
  • Kvádr
    cuboid Kvádr s hranou a=7 cm a tělesových úhlopříčkou u=33 cm má objem V=3136 cm3. Vypočítejte velikosti ostatních hran.

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.



Hledáte pomoc s výpočtem kořenů kvadratické rovnice?