Přirozená čísla + matematická olympiáda - příklady a úlohy

Počet nalezených příkladů: 57

  • C–I–4 MO 2017
    nahoda Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n2 (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
  • Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čís
  • Mnohonožka Z6–I–3
    mnohonozky.JPG Mnohonožka Mirka sestává z hlavy a několika článků, na každém článku má jeden pár nohou. Když se ochladilo, rozhodla se, že se obleče. proto si na třetím článku od konce a potom na každém dalším třetím článku oblékla ponožku na levou nožku. Podobně si na
  • Z6–I–5 MO 2018
    olympics_9 V následujícím příkladě na sčítání představují stejná písmena stejné číslice, různá písmena různé číslice. RATAM RAD -------------- ULOHY
  • Z7-1-6 MO 2017
    tanks_1 Vodník Chaluha naléval mlhu do rozmanitých, různě velkých nádob, které si pečlivě seřadil na polici. Při nalévání postupoval postupně z jedné strany, žádnou nádobu nepřeskakoval. Do každé nádoby se vejde alespoň decilitr mlhy. Kdyby naléval mlhu sedmilitr
  • Pážata MO Z6-I-4
    coins Jednou si král zavolal všechna svá pážata a postavil je do řady. Prvnímu pážeti dal určitý počet dukátů, druhému dal o dva dukáty méně, třetímu opět o dva dukáty méně a tak dále. Když došel k poslednímu pážeti, dal mu příslušný počet dukátů, otočil se a o
  • Z7–I–4 2018 MO Betka
    gears_mo Karel si hrál s ozubenými koly, která byla sestavena do soukolí. Když zatočil jedním kolem, točila se všechna ostatní. První kolo mělo 32 a druhé 24 zubů. Když se třetí kolo otočilo (je uprostřed soukolí) přesně osmkrát, druhé kolo udělalo pět otáček a čá
  • Z5 – I – 5
    olympics_7 Tomáš dostal devět kartiček, na nichž byly následující čísla a matematické symboly: 18, 19, 20, 20, +, −, ×, (, ) Kartičky skládal tak, že vedle sebe nikdy neležely dvě kartičky s čísly, tj. Střídaly se kartičky s čísly a kartičky se symboly. Takto vznikl
  • MO Z9-I-6 2019
    triangles Kristýna zvolila jisté liché přirozené číslo dělitelné třemi. Jakub s Davidem pak zkoumali trojúhelníky, které mají obvod v milimetrech roven Kristýnou zvolenému číslu a jejichž strany mají délky v milimetrech vyjádřeny navzájem různými celými čísly. Jaku
  • MO Z6–I–3 2018
    moz6 Na obrazku jsou naznačeny dvě řady šestiúhelníkových pole které doprava pokračují bez omezení do každého pole doplňte jedno kladné celé číslo tak aby součet čísel v libovolných třech navzájem sousedících polích byl 2018. Určete číslo které bude 2019 políč
  • MO Z8-I-1 2018
    age_6 Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 238. Kdyby totéž provedli za čtyři roky, byl by tento součin 378. Určete součet současných věků Ferdy a Davida.
  • MO 2019 Z8–I–4
    olympics_1 Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
  • V Kocourkově - Z8-I-6 2019 MO
    mince_1 V Kocourkově používají mince pouze se dvěma hodnotami, které jsou vyjádřeny v kocourkovských korunách kladnými celými čísly. Pomocí dostatečného množství takových mincí je možné zaplatit jakoukoli celočíselnou částku větší než 53 kocourkovských korun, a t
  • Z9-I-4
    numbers_30 Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devíti
  • Betka
    numbers_2 Betka si myslela přirozené číslo s navzájem různými ciframi a napsala ho na tabuli. Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo. Sečtením těchto dvou čísel dostala číslo, které mělo stejný počet cifer jako myšleny číslo a skládal
  • Z9 – I – 6 2018 MO
    numbers2_49 Přirozené číslo N nazveme bombastické, pokud neobsahuje ve svém zápise žádnou nulu a pokud žádné menší přirozené číslo nemá stejný součin číslic jako číslo N. Karel se nejprve zajímal o bombastická prvočísla a tvrdil, že jich není mnoho. Vypište všechna d
  • Bonbóny MO Z6-I-5 2017
    cukriky_10 V plechovce byly červené a zelené bonbóny. Čeněk snědl 2/5 všech červených bonbónů a Zuzka snědla 3/5 všech zelených bonbónů. Teď tvoří červené bonbóny 3/8 všech bonbónů v plechovce. Kolik nejméně bonbónů mohlo být původně v plechovce?

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.



Přirozená čísla - slovní úlohy a příklady. Matematická olympiáda - slovní úlohy a příklady.