Trojúhelník + objem tělesa - příklady a úlohy

  1. Nádoba - kužel
    cone-upside Uzavřená nádoba ve tvaru kužele stojící na své podstavě je naplněna vodou tak, že hladina se nachází 8 cm od vrcholu. Po otočení nádoby o 180 stupňů – stojí na vrcholu – je hladina vzdálena 2 cm od podstavy. Jak vysoká nádoba je?
  2. Osový řez
    rez_kuzel Osový řez kužele je rovnoramenný trojúhelník, v němž je poměr průměru kužele a stěny kužele 2: 3. Vypočtěte jeho objem, pokud víte, že jeho plocha je 314 cm čtverečních.
  3. Kužel
    kuzel3 Vypočtěte objem a plochu kužele, jehož výška je 10 cm a v osovém řezu svírá se stěnou kužele úhel 30 stupňů.
  4. Osmiboký jehlan
    octagonl_pyramid2 Urči objem pravidelného osmibokého jehlanu, jehož výška v = 100 a úhel boční hrany s rovinou podstavy je α = 60°.
  5. Jehlan
    ihlan Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.
  6. Vypočítej 34
    jehlan Vypočítej prosím objem čtyřbokého jehlanu když a=5cm a stěnová výška má velikost w=12cm.
  7. Polokoule 2
    naklon_koule Nádoba tvaru polokoule je zcela naplněna vodou. Jaký poloměr má nádoba, když z ní při naklonění o 30 stupňů vyteče 10 l vody?
  8. Komolého kruhový kužel
    frustum-of-a-right-circular-cone Betonový podstavec má tvar pravoúhlého komolého kruhového kužele s výškou 2,5 metru. Průměr horní a dolní základny je 3 stopy a 5 stop. Určitě boční plochu povrchu, celkovou plochu povrchu a objem podstavce.
  9. Tajný poklad
    max_cylinder_pyramid Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
  10. Přeřízneme jehlan
    jehlan_4b_obdelnik Pravidelný čtyřboký jehlan má výšku 40 cm a stranu podstavy 21 cm. Jehlan přeřízneme v poloviční výšce. Jak velký objem budou mít obě části?
  11. Čtyřboký jehlan 9
    jehlan Je dán pravidelný čtyřboký jehlan. Délka hrany podstavy a = 6,5 cm, boční hrana s = 7,5 cm. Vypočítejte objem a obsah pláště.
  12. Podstava
    hranol3b Podstavu kolmého hranolu tvoří pravoúhlý trojúhelník, jehož odvěsny mají poměr 3: 4. Výška hranolu je o 2cm menší, než větší odvěsna. Určitě objem hranolu, pokud jeho povrch je 468 cm2.
  13. Poměr obsahů
    kuzel2 Poměr obsahu podstavy rotačního kužele k jeho plášti je 3: 5. Vypočítejte povrch a objem kužele, pokud jeho výška v = 4 cm.
  14. Trojboký hranol
    prism_rt Vypočítejte trojboký hranol, pokud má podstavu tvaru pravoúhlý trojúhelník s odvěsnou a = 4cm, a přeponou c = 50mm a s výškou hranolu 0,12dm
  15. Vypočítejte 15
    pyramid333 Vypočítejte objem pravidelného trojbokého jehlanu s délkou hrany a= 12cm a vyškou jehlanu h = 20cm.
  16. Zlato 2
    aurum Zlato bylo odlito do tvaru pravidelného trojbokého jehlanu s délkou podstavné hrany 12 cm a vysokého 8 cm. Hustota zlata je 19 320 kg/m3. Jakou hmotnost má odlitek?
  17. Vrcholy 4
    hexaon Vrcholy podstavy pravidelného šestibokého jehlanu leží na kružnici s poloměrem 10cm. Výška jehlanu je 12cm. Jaký je jeho objem?
  18. Věz vysílače
    tower_3 Věz vysílače je v 80 metrech výšky stabilizována k zemi 4 ocelovými lany ukotvenými v zemi 60 metrů od paty věže. Vypočítejte, kolik metrů ocelového lana bylo potřeba ke stabilizaci vysílací věže. Použité ocelové lano má kruhový průřez o poloměru 2 cm.
  19. Úhlopříčka
    hranol222_2 Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel 60 stupňů, délka hrany postavy je 10 cm. Jaký je objem tělesa?
  20. Vypočítejte 11
    jehlan_4b_obdelnik_3 Vypočítejte povrch S a objem V pravidelného čtyřbokého jehlanu se stranou podstavy a=5 m a tělesovou výškou 14 m.

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož ji a my Ti ji zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.
Jde o to že chceme pomáhat, ale chodí nám upozornění od organizátorů těchto soutěží, že pomáháme řešitelem podvádět. My jsme se snažili jistit vás jako horolezci, nikoliv táhnout lanem na vrchol. Je pravda že hotové řešení je již příliš velká pomoc.

Správné řešení soutěžních úloh se dozvíte po skončení daného kola ...



Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku. Viz také více informacií na Wikipedii.