Úhel + podobnost trojúhelníků - příklady a úlohy

Počet nalezených příkladů: 33

  • Stín 1m
    tree2 Stín 1m vysoké tyče vržený na vodorovnou rovinu má délku 0,8m. Ve stejném okamžiku má stín stromu vržený na vodorovnou rovinu 6,4m . Urči výšku stromu.
  • Těleso 11
    naklonena_rovina Těleso spočívá na nakloněné rovině a působí na ní tlakovou silou o velikosti 70N. Určete jaký úhel svírá nakloněná rovina s vodorovnou rovinou jestliže na těleso působí tíhová síla o velikosti 100N.
  • Vzdálenost bodů
    jehlan_4b_obdelnik_1 Je dán pravidelný čtyřboký jehlan ABCDV, ve kterém AB = a = 4 cm a v = 8 cm. Nechť S je střed CV. Vypočítejte vzdálenost bodů A a S.
  • Západ-jih
    tower Pozoroval stojící západně od věže vidí její vrchol pod výškovým úhlem 45 stupňů. Poté, co se posune o 50 metrů na jih, vidí její vrchol pod výškovým úhlem 30 stupňů. Jak vysoká je věž?
  • Komín 4
    shadow Komín vrhá stín dlouhý 45 metrů. Metrová tyč stojící kolmo k zemi má stín dlouhý 90 cm. Vypočítej výšku komínu.
  • Maják
    majak Marcel (bod J) leží v trávě a vidí v zákrytu vrchol stanu (bod T) a za ním vrchol majáku (P). |TT'| = 1,2m, |PP'| = 36m, |JT'| = 5m. Marcel leží 15 m odbrehu moře (M). Vypočítejte vzdálenost majáku od břehu moře - |P'M| .
  • Stín stromu
    stromcek_3 Pod stromem stojí Miro a pozoruje svůj stín a stín stromu. Miro je vysoký 180 cm a jeho stín má délku 1,5m. Stín stromu je třikrát tak dlouhý jako Mirův stín. Jak vysoký je strom v metrech?
  • V lichoběžníku 3
    stredova sumernost V lichoběžníku ABCD jsou dány délky základen |AB| = 12 cm, |CD| = 8 cm. Bod S je průsečík úhlopříček, pro který platí |AS| = 6 cm. Vypočítej délku celé úhlopříčky AC.
  • Dva úhly
    rt_1_1 Trojúhelníky ABC a A'B'C 'jsou podobné. V trojúhelníku ABC jsou velikosti dvou úhlů 25° a 65°. Zdůvodnite, proč v trojúhelníku A'B'C 'je součet velikostí dvou c rovný 90°.
  • Pravítko
    pravitko_1 Ako daleko od Petra stojí dvoumetrový Jirka? Petr se na Jirku dívá přes pravítko, které drží v natažené ruce 60 cm od oka a na pravítku změřil Jirkovu výšku na 15 mm.
  • Stožár
    horizons Stožár má 13 metrů dlouhý stín na svahu stoupajícím od sloupu sloupku ve směru úhlu stínu při úhlu 15°. Určete výšku stožáru, pokud je slunce nad obzorem (horizontem) v úhlu 33°. Použijte sinusovou větu.
  • Pravoúhlý lichoběžník 6
    right-trapezium-figure Pravoúhlý lichoběžník ABCD se základnami AB a CD je rozdělen úhlopříčkou AC na dva rovnoramené pravoúhlé trojúhelníky. Délka úhlopříčky AC je rovna 62cm. Vypočítejte v cm čtverečných obsah lichoběžníku a vypočítej, o kolik cm se liší obvody trojúhelníků A
  • Kolmá tyč
    shadow_1 Metrová tyč kolmá k zemi vrhá stín dlouhý 40 cm, dům vrhá stín dlouhý 6 metrů. Jaká je výška domu?
  • Zrcátko
    mirror Jak daleko od svých nohou musel Pavel umístit zrcátko, aby v něm uviděl vrchol věže vysoké 12 m? Výška Pavlových očí očí nad vodorovnou rovinou je 160 cm, Pavel je od věže vzdálen 20 m.
  • Strom
    tree2_1 Strom kolmý k vodorovnému povrchu vrhá stín 8,32 m. Současně metrová tyč kolmá k vodorovnému povrchu má délku stínu 64 cm. Jak je vysoký strom?
  • Garáž 2
    garaz2 V garáži stojí u stěn naproti sobě dvě latě: jedna 2 metry dlouhá a druhá 3 metry dlouhá. Spadnou proti sobě a opřou se o protilehlé stěny garáže obě latě se překříží ve výšce 70 cm nad podlahou garáže. Jak široká je garáž?
  • Sluneční paprsky
    sfinga-a-cheopsova-pyramida-w-4066 Dopadají-li sluneční paprsky pod úhlem 60°, vrhá slavná egyptská Cheopsova pyramida, která je dnes vysoká 137,3m , stín dlouhý 79,3m. Vypočítejte dnešní výšku sousední Chefrenovi pyramidy , jejíž stín měří v témže okamžiku 78,8 m, a dnešní výšku nedaleké
  • Thalés
    tales Thalés je vzdálený 1 m od jámy. Oči má ve výšce 150 cm nad zemí a dívá do jámy s průměrem 120 cm podle obrázku. Vypočítejte hloubku jámy.
  • Najděte
    diagons-of-an-isosceles-trapezoid Najděte obsah rovnoramenného lichoběžníku, pokud délka základen je 16 cm a 30 cm, a diagonály (úhlopříčky) jsou navzájem kolmé.
  • Komolý jehlan
    truncated_hexa_pyramid Vypočtěte objem pravidelného šestibokého komolého jehlanu, jestliže je délka hrany dolní podstavy 30 cm, horní podstavy 12 cm a pokud délka boční hrany je 41 cm.

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.



Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.