Matematická olympiáda - slovní úlohy a příklady - strana 2

Úkoly MO nejsou lehké, ani pro dospělé lidi. Zároveň věříme, že správné řešení, které je zde publikované téměř na jeden klik poslouží jen na inspiraci. V reálném životě každý totiž řeší úkoly, které nikdo jiný před tím neřešil.
  
Nenechte se odradit, když neobjevíte hned řešení. Experimentujte, kreslete si, "hrajte se" s úlohou. Někdy pomůže podívat se do nějaké knížky, kde najdete podobné úkoly vyřešeny, jindy se může stát, že najednou o tři dny "z ničeho nic" na řešení přijdete.

  1. Myška Hryzka
    myska_hryzka Myška Hryzka našla 27 stejných krychliček sýra. Nejdříve si z nich poskládala velkou krychli a chvíli počkala, než se sýrové krychličky k sobě přilepily. Potom z každé stěny velké krychle vyhryzla střední krychličku. Poté snědla i krychličku, která byla v
  2. Mnohonožka Z6–I–3
    mnohonozky.JPG Mnohonožka Mirka sestává z hlavy a několika článků, na každém článku má jeden pár nohou. Když se ochladilo, rozhodla se, že se obleče. proto si na třetím článku od konce a potom na každém dalším třetím článku oblékla ponožku na levou nožku. Podobně si na
  3. Ovce a beran
    sheep Když pán Beran zakladal chov, měl bílych ovci o 8 více nez černých. V současnosti má bílych ovci čtyrikrát více než na začátku a černých třikrát více než na začátku. Bílych ovcí je teď o 42 více než černých. Kolik nyní pan Beran chová bílych a černých ovc
  4. Mo - kružnice
    mo Jirka sestrojil čtverec ABCD o straně 12 cm. Do tohoto čtverce narýsoval čtvrtkružnici k, která měla střed v bodě B a procházela bodem A, a půlkružnici l, která měla střed v polovině strany BC a procházela bodem B. Rád by ještě sestrojil kružnici, která b
  5. Betka
    numbers_2 Betka si myslela přirozené číslo s navzájem různými ciframi a napsala ho na tabuli. Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo. Sečtením těchto dvou čísel dostala číslo, které mělo stejný počet cifer jako myšleny číslo a skládal
  6. Lichoběžník MO-5-Z8
    lichobeznik_mo_z8 Lichoběžník ABCD je úsečkou CE rozdělen na trojúhelník a rovnoběžník, viz obrázek. Bod F je středem úsečky CE, přímka DF prochází středem úsečky BE a obsah trojúhelníku CDE je 3 cm2. Určete obsah lichoběžníku ABCD.
  7. Číslo dne
    calendar_1 Číslo dne je pořadové číslo daného dne v příslušném měsíci (tedy např. číslo dne 5. srpna 2016 je 5). Ciferný součet dne je součet hodnot všech cifer v datu tohoto dne (tedy např. ciferný součet dne 5. srpna 2016 je 5 + 8 + 2 + 0 + 1 + 6 = 22). Šťastný de
  8. Klávesy
    klavesy Míša mel na poličce malé klávesy, které vidíte na obrázku. Na bílých klávesách byly vyznačeny jejich tóny. Klávesy našla malá Klára. Když je brala z poličky, vypadly jí z ruky a všechny bílé klávesy se z nich vysypaly. Aby se bratr nezlobil, začala je Klá
  9. Vláček
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakem. Vlak měl tři vagony a v každém se vezla právě tři čísla. Číslo 1 se vezlo v prvním vagonu a v posledním vagonu byla všechna čísla lichá. Průvodčí cestou spočítal součet čísel v prvním, druhém i posledním vago
  10. Rovnoramenný lichoběžník
    mo-klm Je dán rovnoramenný lichoběžník ABCD, v němž platí: |AB| = 2|BC| = 2|CD| = 2|DA|: Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikos
  11. Myšky - Z9–I–5
    Mysky Myšky si postavily podzemní domeček sestávající z komůrek a tunýlků: • každý tunýlek vede z komůrky do komůrky (tzn. žádný není slepý), • z každé komůrky vedou právě tři tunýlky do tří různých komůrek, • z každé komůrky se lze tunýlky dostat do kterék
  12. Katka MO
    reporter_saved6 Katka narýsovala trojúhelník ABC. Střed strany AB si označila jako X a střed strany AC jako Y . Na straně BC chce najít takový bod Z, aby obsah čtyřúhelníku AXZY byl co největší. Jakou část trojúhelníku ABC může maximálně zabírat čtyřúhelník AXZY ?
  13. Z9–I–2
    map_mo Z bodu A do bodu C vede naučná stezka procházející bodem B a jinudy také červená turistická značka, viz obrázek. Kromě toho lze použít také nezakreslenou zkratku dlouhou 1 500 metrů začínající v A a ústící na naučné stezce. Vojtěch zjistil, že: • výlet z
  14. Polévka
    kotlik V pondělí uvařili 25 hrnců a 10 kotlů polévky. V úterý 15 hrnců a 13 kotlů. Ve středu 20 hrnců a ve čtvrtek 30 kotlů. V pondělí a úterý uvařili stejné množství polévky. Kolikrát více polévky uvařili ve čtvrtek jako ve středu?
  15. Osum kvádrů
    cuboids Dana měla za úlohu uložit osum kvádrů podle těchto pravidel: 1. Mezi dvěma červenými kvádry musí být jeden jiné barvy. 2. Mezi dvěma modrými musí být dva jiné barvy. 3. Mezi dvěma zelenými musí být tři jiné barvy. 4. Mezi dvěma žlutými kvádry musí být
  16. Jízdní kola
    cyclist_11 Jsi majitel dopravního hřiště. Kup jízdní kola dvou barev libovolného počtu, ale musíš utratit přesně 120000Kč. Modré kolo stojí 3600Kč a červené kolo stojí 3200Kč.
  17. Směnárna
    exchange_rates V tabulce je kurzovní lístek směnárny, avšak některé hodnoty jsou v něm nahrazeny otazníky. Směnárna vyměňuje peníze v uvedených kurzech a neúčtuje si jiné poplatky. nákup prodej1 EUR 26,20 CZK 28,00 CZK1 GBP b=? CZK c=? CZK 1. Kolik eur (a=?) dostane z
  18. Z9–I–6
    otaceni_ctverce Je dána úsečka AB délky 12 cm, na níž je jednou stranou položen čtverec MRAK se stranou délky 2 cm, viz obrázek. MRAK se postupně překlápí po úsečce AB, přičemž bod R zanechává na papíře stopu. Narýsujte celou stopu bodu R, dokud čtverec neobejde úsečku A
  19. Veverky
    Veverka Tři kamarádky veverky spolu vyrazily na sběr lískových oříšků. Zrzečka jich našla dvakrát víc než Pizizubka a Ouška dokonce třikrát víc než Pizizubka. Cestou domů si povídaly a přitom louskaly a jedly své oříšky. Pizizubka snědla polovinu všech oříšků, k
  20. Nádoby
    nadoby Máme nádobu o obsahu 7litru,5litru a 2litry. Největší nádoba je naplněná tekutinou, ostatní jsou prázdné. Dokážeš pouze přeléváním získat 5litru a dvakrát po jednom litru tekutiny? Na kolik přelití to jde?

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož ji a my Ti ji zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.
Jde o to že chceme pomáhat, ale chodí nám upozornění od organizátorů těchto soutěží, že pomáháme řešitelem podvádět. My jsme se snažili jistit vás jako horolezci, nikoliv táhnout lanem na vrchol. Je pravda že hotové řešení je již příliš velká pomoc.

Správné řešení soutěžních úloh se dozvíte po skončení daného kola ...



Viz také více informacií na Wikipedii.