Matematická olympiáda - příklady - strana 6

Úkoly MO nejsou lehké, ani pro dospělé lidi. Zároveň věříme, že správné řešení, které je zde publikované téměř na jeden klik poslouží jen na inspiraci. V reálném životě každý totiž řeší úkoly, které nikdo jiný před tím neřešil.
  
Nenechte se odradit, když neobjevíte hned řešení. Experimentujte, kreslete si, "hrajte se" s úlohou. Někdy pomůže podívat se do nějaké knížky, kde najdete podobné úkoly vyřešeny, jindy se může stát, že najednou o tři dny "z ničeho nic" na řešení přijdete.

  1. Hodiny 11
    clocks2_13 Matěj zjišťoval, jak přesně měří věžní hodiny čas. Došel k závěru, že kdyby je nikdo průběžně nenastavoval, ukazovali by zcela přesný čas vždy jednou za 200 dnů. a) Vypočítej, o kolik sekund se čas měřený věžními hodinami liší od přesného času za 1 hodin
  2. Z7–I–1 MO 2018
    numbers2_49 Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné číslo poskládané z těchto kartiček je dělitelné šesti. Navíc lze z těchto kartiček poskládat trojmístné číslo
  3. Z6–I–1 MO 2018
    hrusky_8 Ivan a Mirka se dělili o hrušky na míse. Ivan si bere dvě hrušky a Mirka polovinu toho co na míse zbývá. Takto postupně odebírali Ivan, Mirka, Ivan, Mirka a nakonec Ivan, který vzal poslední dvě hrušky. Určete, kdo měl nakonec víc hrušek a o kolik.
  4. Z8-I-2 MO 2018
    fr_2 Do třídy přibyl nový žák, o kterém se vědělo, že kromě angličtiny umí výborně ještě jeden cizí jazyk. Tři spolužáci se dohadovali, který jazyk to je. První soudil: „Francouzština to není. " Druhý hádal: „Je to španělština nebo němčina. " Třetí usuzoval:
  5. Z5 – I – 5
    olympics_7 Tomáš dostal devět kartiček, na nichž byly následující čísla a matematické symboly: 18, 19, 20, 20, +, −, ×, (, ) Kartičky skládal tak, že vedle sebe nikdy neležely dvě kartičky s čísly, tj. Střídaly se kartičky s čísly a kartičky se symboly. Takto vzni
  6. Z6-I-6 MO 2018
    12uholnik_1 Ve dvanáctiúhelníku ABCDEF GHIJKL jsou každé dvě sousední strany kolmé a všechny strany s výjimkou stran AL a GF jsou navzájem shodné. Strany AL a GF jsou oproti ostatním stranám dvojnásobně dlouhé. Úsečky BG a EL se protínají v bodě M a rozdělují dvanáct
  7. Z7–I–2 MO 2018
    12uholnik Ve dvanáctiúhelníku ABCDEF GHIJKL jsou každé dvě sousední strany kolmé a všechny strany s výjimkou stran AL a GF jsou navzájem shodné. Strany AL a GF jsou oproti ostatním stranám dvojnásobně dlouhé. Úsečky BG a EL se protínají v bodě M. Čtyřúhelník ABMJ m
  8. MO Z6-1-3 2017 šachovnica
    jazdec_1 Veronika má klasickou šachovnici s 8×8 políčky. Řádky jsou označeny číslicemi 1 až 8, sloupce písmeny A až H. Veronika položila na políčko B1 koně, se kterým lze pohybovat pouze tak jako v šachách. 1. Je možné přemístit koně ve čtyřech tazích na políčko
  9. Z7-1-6 MO 2018
    iso_rt Je dán rovnoramenný pravoúhlý trojúhelník ABS se základnou AB. Na kružnici, která má střed v bodě S a prochází body A a B, leží bod C tak, že trojúhelník ABC je rovnoramenný. Určete, kolik bodů C vyhovuje uvedeným podmínkám, a všechny takové body sestroj
  10. MO Z6–I–1 - 2017 - Anička
    numbs_9 Anička a Blanka si napsaly každá jedno dvojmístné číslo, které začínalo sedmičkou. Dívky si zvolily různá čísla. Poté každá mezi obě číslice vložila nulu, takže jim vzniklo trojmístné číslo. Od něj každá odečetla svoje původní dvojmístné číslo. Výsledek j
  11. Z5 – I – 2 MO 2018
    triangle_7 Tereza dostala čtyři shodné pravoúhlé trojúhelníky se stranami délek 3 cm, 4 cm a 5 cm. Z těchto trojúhelníků (ne nutně ze všech čtyř) zkoušela skládat nové útvary. Postupně se jí podařilo složit čtyřúhelníky s obvodem 14 cm, 18 cm, 22 cm a 26 cm, a to po
  12. MO C–I–1 2018
    numbers_49 Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými.
  13. Z bodu
    parcela_2 Z bodu A do B je to 16 km z bodu C do B je to 20 km z bodu C do D je to 19 km kolik kilometru to je z bodu D do bodu A
  14. C – I – 3 MO 2018
    olympics_10 Nechť a, b, c jsou kladná reálná čísla, jejichž součet je 3, a každé z nich je nejvýše 2. Dokažte, že platí nerovnost: a2 + b2 + c2 + 3abc < 9
  15. Rok 2018 jak číslo
    new_year Součin tří kladných čísel je 2018. Která jsou to čísla?
  16. Cifra
    olympics_3 Jaké je poslední číslo 2016-té mocniny čísla 2017?
  17. C – I – 6 MO 2018
    numbers_49 Najděte všechna trojmístná čísla n s třemi různými nenulovými číslicemi, která jsou dělitelná součtem všech tří dvojmístných čísel, jež dostaneme, když v původním čísle vyškrtneme vždy jednu číslici.
  18. Prvočísla - 6c
    numberline_1 Najít všechna šesticiferná prvočísla, která obsahují každou z číslic 1,2,4,5,7 a 8 právě jednou. Kolik jich je?
  19. C–I–4 MO 2017
    nahoda Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n2 (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
  20. Dva přátele
    aircraft-02_14 Dva přátele cestující letadlem měli dohromady 35 kg zavazadel. Za nadváhu při přepravě zaplatil jeden 72 korun a druhý 108 korun. Kdyby za všechna zavazadla platil jen jeden, stálo by ho to 300 korun. Jakou hmotnost zavazadel měl každý z nich, kolik kilog

Máš zajímavý příklad, který nevíš vypočítat? Vlož ho a my Ti ho zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.



Viz také více informacií na Wikipedii.