Střední škola + matematická olympiáda - příklady

  1. Bazén
    praded Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. Propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hrano
  2. Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  3. Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čí
  4. Osmistěn
    8sten Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také se
  5. Čtvercova sít
    sit Čtvercova síť se skladá ze čtverců se stranou delky 1cm. Narysujte do ní alespoň tři různe obrazce takové, aby každý měl obsah 6cm2 a obvod 12cm a aby jejich strany splývaly s přímkami síťe.
  6. MO - trojúhelníky
    metal Na stranách AB a AC trojúhelníku ABC lěží po řadě body E a F, na úsečce EF leží bod D. Přmky EF a BC jsou rovnoběžné a součastně platí FD : DE = AE : EB = 2:1. Trojúhelník ABC má obsah 27 hektarů a úsečkami EF, AD a DB je rozdělen na čtyři části . Určete
  7. Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  8. Ovce a beran
    sheep Když pán Beran zakladal chov, měl bílych ovci o 8 více nez černých. V současnosti má bílych ovci čtyrikrát více než na začátku a černých třikrát více než na začátku. Bílych ovcí je teď o 42 více než černých. Kolik nyní pan Beran chová bílych a černých ovc
  9. Mo - kružnice
    mo Jirka sestrojil čtverec ABCD o straně 12 cm. Do tohoto čtverce narýsoval čtvrtkružnici k, která měla střed v bodě B a procházela bodem A, a půlkružnici l, která měla střed v polovině strany BC a procházela bodem B. Rád by ještě sestrojil kružnici, která b
  10. Betka
    numbers_2 Betka si myslela přirozené číslo s navzájem různými ciframi a napsala ho na tabuli. Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo. Sečtením těchto dvou čísel dostala číslo, které mělo stejný počet cifer jako myšleny číslo a skládal
  11. Klávesy
    klavesy Míša mel na poličce malé klávesy, které vidíte na obrázku. Na bílých klávesách byly vyznačeny jejich tóny. Klávesy našla malá Klára. Když je brala z poličky, vypadly jí z ruky a všechny bílé klávesy se z nich vysypaly. Aby se bratr nezlobil, začala je Klá
  12. Rovnoramenný lichoběžník
    mo-klm Je dán rovnoramenný lichoběžník ABCD, v němž platí: |AB| = 2|BC| = 2|CD| = 2|DA|: Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikos
  13. Z9–I–2
    map_mo Z bodu A do bodu C vede naučná stezka procházející bodem B a jinudy také červená turistická značka, viz obrázek. Kromě toho lze použít také nezakreslenou zkratku dlouhou 1 500 metrů začínající v A a ústící na naučné stezce. Vojtěch zjistil, že: • výlet z
  14. Osum kvádrů
    cuboids Dana měla za úlohu uložit osum kvádrů podle těchto pravidel: 1. Mezi dvěma červenými kvádry musí být jeden jiné barvy. 2. Mezi dvěma modrými musí být dva jiné barvy. 3. Mezi dvěma zelenými musí být tři jiné barvy. 4. Mezi dvěma žlutými kvádry musí být
  15. Z9–I–6
    otaceni_ctverce Je dána úsečka AB délky 12 cm, na níž je jednou stranou položen čtverec MRAK se stranou délky 2 cm, viz obrázek. MRAK se postupně překlápí po úsečce AB, přičemž bod R zanechává na papíře stopu. Narýsujte celou stopu bodu R, dokud čtverec neobejde úsečku A
  16. Z9–I–3 - 2017 kafemlýnky2
    robots Roboti Robert a Hubert skládají a rozebírají kafemlýnky. Přitom každý z nich kafemlýnek složí čtyřikrát rychleji, než jej sám rozebere. Když ráno přišli do dílny, několik kafemlýnků už tam bylo složeno. V 7:00 začal Hubert skládat a Robert rozebírat, přes
  17. MO Z9–I–1 2017
    age_4 Věkový průměr všech lidí na oslavě byl roven počtu přítomných. Po odchodu jedné osoby, které bylo 29 let, byl věkový průměr zase roven počtu přítomných. Kolik lidí bylo původně na oslavě?
  18. Z9-I-5 MO 2017 obdélník
    flg Uvnitř obdélníku ABCD leží body E a F tak, že úsečky EA, ED, EF, FB, FC jsou navzájem shodné. Strana AB je dlouhá 22 cm a kružnice opsaná trojúhelníku AFD má poloměr 10cm. Určete délku strany BC.
  19. Mařenka MO C-I-5
    cukriky_4 Mařenka rozmístí do vrcholů pravidelného osmiúhelníku různé počty od jednoho po osm bonbónů. Peter si pak může vybrat, které tři hromádky bonbónů dá Mařence, ostatní si ponechá. Jedinou podmínkou je, že tyto tři hromádky leží ve vrcholech rovnoramenného t
  20. Bikvadratická
    eq2_6 Najděte největší přirozené číslo d, které má tu vlastnost, že pro libovolné přirozené číslo n je hodnota výrazu V(n)=n4+11n2−12 dělitelná číslem d.

Máš zajímavý příklad, který nevíš vypočítat? Vlož ho a my Ti ho zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.