Geometrie - slovní úlohy

  1. Maják
    majak Marcel (bod J) leží v trávě a vidí v zákrytu vrchol stanu (bod T) a za ním vrchol majáku (P). |TT'| = 1,2m, |PP'| = 36m, |JT'| = 5m. Marcel leží 15 m odbrehu moře (M). Vypočítejte vzdálenost majáku od břehu moře - |P'M| .
  2. V lichoběžníku 3
    stredova sumernost V lichoběžníku ABCD jsou dány délky základen |AB| = 12 cm, |CD| = 8 cm. Bod S je průsečík úhlopříček, pro který platí |AS| = 6 cm. Vypočítej délku celé úhlopříčky AC.
  3. Směrový vektor
    vectors_3 A(5;-4) B(1;3) C(-2;0) D(6;2) Vypočítej směrový vektor a) a=AB b) b= BC c) c=CD
  4. Čtverec 28
    ctverec_2 Čtverec ABCD má střed S[−3, −2] a vrchol A[1, −3]. Určete souřadnice ostatních vrcholů čtverce.
  5. V lichoběžníku
    image22 V lichoběžníku ABCD jsou dány základny: AB = 12cm CD = 4 cm A úhlopříčky se protínají pod pravým úhlem. Jaký je obsah tohoto lichoběžníku ABCD?
  6. Stožár
    horizons Stožár má 13 metrů dlouhý stín na svahu stoupajícím od sloupu sloupku ve směru úhlu stínu při úhlu 15°. Určete výšku stožáru, pokud je slunce nad obzorem (horizontem) v úhlu 33°. Použijte sinusovou větu.
  7. Obdélník
    diagonal V obdélníku se stranami 8 a 7 vyznačíme úhlopříčku. Jaká je pravděpodobnost, že náhodně zvolený bod uvnitř obdélníku je blíže k této úhlopříčce, jako k libovolné straně obdélníku?
  8. Síly
    ijk Na bod O působí tři navzájem kolmé síly F1 = 20 N, F2 = 7 N, F3 = 19 N. Určete výslednici F a úhly, které svírá výslednice se složkami F1, F2, F3.
  9. Obrácená Pythagorova věta
    pytagors Dané jsou délky stran trojúhelníku. Rozhodněte, který z nich je pravoúhlý: Δ ABC: 74 cm, 24 cm, 70 cm ? Δ DEF: 99 mm, 101 mm, 20 mm ? Δ GHI: 25 mm, 7 mm, 24 mm ? Δ JKL: 55 mm, 44 mm, 33 mm ? Δ MNO: 60 dm, 11 dm, 61 dm ?
  10. Kruhový výsek
    pizza Kruhový výsek má obvod 116.24 km a obsah 2150.42 km2. Vypočítej poloměr příslušné kružnice a velikost středového úhlu výseku.
  11. Trojúhelník
    sedlo Je dán trojúhelník KLM souřadnicemi vrcholů v rovině: K[-2, -20] L[4, 1] M[-16, 4]. Vypočítejte jeho obsah a vnitřní úhly.
  12. Železnice
    railways Železnice má stoupání 8.1 ‰. Jaký je výškový rozdíl dvou míst na trati vzdálených navzájem 5575 metrů?
  13. Kužel
    cones Rotační kužel o výšce 15 cm a objemu 10598 cm3 je ve třetině výšky (měřeno zespoda) rozříznut rovinou rovnoběžnou s podstavou. Určete poloměr a obvod kruhovéh řezu.
  14. Kruhový bazén
    arc_open Podstava bazénu má tvar kruhu o poloměru r = 10m kromě kruhového odstavce, který určuje tětiva délky 10m. Jeho hloubka je h = 2m. Kolik hektolitrů vody se vejde do bazénu?
  15. Podobnost
    similar_triangle Jsou dva pravoúhlé trojúhelníky navzájem podobné, pokud první má ostrý úhel 20° a druhý má ostrý úhel 40°?
  16. Šestiúhelník
    hexagon Je dán pravidelný šestiúhelník ABCDEF. Je-li obsah trojúhelníku ABC roven 13, pak obsah šestiúhelníku ABCDEF je roven? Nevím, jak na to jednoduše přijít....
  17. Stoupání
    Mazda_RX7_1 Na dopravní značce, která informuje o stoupání, je napsáno 8.7%. Auto prošlo 5 km po této cestě. Jaký výškový rozdíl auto překonalo?
  18. Koeficient podobnosti
    eqlateral_triangles Poměr podobnosti dvou rovnostranných trojúhelníků je 3.5 (t.j. 7:2). Délka strany menšího trojúhelníku je 2.4 cm. Vypočítejte obvod a obsah většího trojúhelníku.
  19. Těžiště
    triangle_axis Vypočítejte souřadnice těžiště T [x, y] trojúhelníku ABC; A[11,4] B[13,-7] C[-17,-18]
  20. Rýchlosti slovenských vlakov
    zssk_train Rudolf se rozhodl cestovat vlakem ze stanice 'Trnava' do stanice 'Zemianske Kostoľany'. V jízdních řádech našel vlak R 725 Remata : km0Bratislava hl.st.12:574Bratislava-Vinohrady13:0113:0219Pezinok13:1213:1346Trnava13:3013:3263Leopoldov13:4514:0168Hloho

Máš zajímavú úlohu, který nevíš vypočítat? Vlož ji a my Ti ji zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.