PIN - kódy

Kolik pětimístných PIN - kódů můžeme vytvořit s použitím sudých číslic?

Výsledek

x =  3125

Řešení:

Textové řešení x =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto slovní úlohy jsou potřebné tyto znalosti z matematiky:

Chceš si dát spočítat kombinační číslo?

Další podobné příklady:

  1. Branky
    hokej_2 čtyři hokejová mužstva nastřílela v turnaji 337 branek. druhé družstvo dalo o 16 branek méně než první , třetí o 17 méně než druhé a čtvrté o 30 branek méně než druhé . Kolik branek dalo každé mužstvo?
  2. Týdenní služba
    school_table.JPG Ve třídě je 20 žáků. Kolik možností má paní učitelka, pokud chce z žáků vybrat náhodně dvou, kteří budou týdeníky?
  3. Koruny
    penize_1.JPG Žáci čtyř ročníků uspořili dohromady n=45000 korun. Z toho první ročník uspořil jednu třetinu, druhý jednu třetinu zbytku, třetí dvě pětiny dalšího zbytku a čtvrtý zbývající část. Kolik korun uspořil každý ročník ?
  4. Třída
    skola_24 V 7. Třídě je o 2 žáky více než v 8. Třídě. Kdyby se počet žáků 7. Třídy zvýšil o 7 a počet žáků 8. Třídy zvýšil o třetinu původního počtu, byl by v obou třídách stejný počet žáků. Kolik žáků je 7. A v 8. Třídě?
  5. Cukrovinky
    cukrovinky Na trzích mají 5 sort bonbónů, jeden váží 31 gramů. Kolika různými způsoby může zákazník koupit 1.519 kg bonbónů.
  6. Olympiáda
    olympics Kolika způsoby se mohou umístit šest závodníků na medailových pozicích na olympiádě? Na barvě kovu záleží.
  7. Medaila
    medails Kolika způsoby lze rozdělit zlatou, stříbrnou a bronzovou medaili mezi 21 soutěžících?
  8. Družstva
    football_team Kolika způsoby lze rozdělit 16 hráčů na dvě 8-členné družstva?
  9. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?
  10. Variace
    pantagram Určete počet prvků jestliže je počet variací čtvrté třídy bez opakování 38-krát větší než počet variací třetí třídy bez opakování.
  11. Počet trojúhelníků
    SquareTriangle Je dán čtverec ABCD a na každé jeho straně 8 vnitřních bodů. Určete počet všech trojúhelníků s vrcholy v těchto bodech.
  12. Loterie 2
    loto Jaká je pravděpodobnost že v loterií, v níž se losuje 5 čísel z 50 vyhraješ první cenu?
  13. Eliminační metoda
    rovnice_1 Řešte soustavu lineárních rovnic eliminační metodou: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  14. Posloupnost
    seq_1 Zapište prvních 6 členů této posloupnosti: a1 = 5 a2 = 7 an+2 = an+1 +2 an
  15. Přímka
    skew_lines Je pravda že přímky které se neprotínají jsou rovnoběžné?
  16. Nohy
    rak Rak má 5 párů nohou. Hmyz má 6 nohou. 60 tvorů má celkem 500 nohou. Okolik více je raků než hmyzu?
  17. AP - lehký
    sigma_1 Urči prvních 9 členů posloupnosti, pokud a10 = -1, d = 4