Bonboniéra

V bonboniéře je 12 bonbónů, které vypadají stejně. Tři z nich jsou plněné nugátem, čtyři oříškem a pět krémem. Nejméně kolik bonbónů musí Ivan vybrat, aby měl jistotu, že vybere dva se stejnou nádivkou?


« Správný výsledek



Nesprávné






Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto slovní úlohy jsou potřebné tyto znalosti z matematiky:

Chceš si dát spočítat kombinační číslo?

Další podobné příklady:

  1. Manažer kvality
    manager Představte si, že jste manažerem kvality na výrobní lince montující elektrospotřebiče. Do spotřebičů se montují tištěné stroje, na jejich bezvadnosti závisí funkčnost výrobku. Linka je vybavena testerem-kontrolní zařízením, které s pravděpodobností 0,999
  2. Zvieratá
    slepice Děda chová husy, prasata, kozy a slepice- celkem 40 kusů. Na každou kozu připadají 3 husy. Kdyby bylo slepic o 8 méně, bylo by jich stejně jako hus a prasat dohromady. Kdyby děda vyměnil čtvrtinu hus za slepice v poměru 3 slepice za 1 husu, měl by celkem
  3. Karty
    cards_2 Předpokládejme, že v klobouku jsou tři karty. Jedna z nich je červená na obou stranách, jedna z nich je černá na obou stranách a třetí má jednu stranu červenou a druhou černou. Z klobouku náhodně vytáhneme jednu kartu a vidíme, že jedna její strana je čer
  4. Diktát
    school_3 Diktát psalo celkem 30 žáků. Jedna třetina z nich dostala jedničku nebo čtyřku. Dvojku čtyřikrát více než trojku. Kolik studentů má nedostatečnou, když víme, že jedničku dostalo 7 žáků, což je zároveň stejný počet jako jako součet těch, co mají trojku a č
  5. Střelci
    soldiers V rotě jsou six střelci. První střelec střílí do cíle s pravděpodobností 49%, další s 75%, 41%, 20%, 34%, 63%. Vypočtěte pravděpodobnost zásahu cíle, pokud střílejí všichni najednou.
  6. Tři střelci
    terc2_3 Tři střelci střílejí, každý jednou, na stejný terč. První zasáhne cíl s pravděpodobností 0,7; druhý s pravděpodobností 0,8 a třetí s pravděpodobností 0,9. Jaká je pravdepodobnsť, že terč zasáhnou: a) právě jednou b) alespoň jednou c) alespoň dvakrát
  7. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?
  8. Tombola výhra
    tombola_1 V tombole prodali 200 lístků, z toho 5 bylo výherních. Jaká je pravděpodobnost, že Kubo, který si koupil 1 lístek, vyhraje?
  9. Hrací kostka
    hracia-kocka Jaká je pravděpodobnost událostí, že pokud hodíme hrací kostkou padne číslo menší než 4?
  10. Chata
    chata_liptov 30 dětí má v chatě k dispozici třílůžkové a čtyřlůžkové pokoje. Pokoje se obsazují tak, aby byla vždy všechna lůžka obsazena. Určete, kolik pokojů celkem děti obsadí, jestliže ve čtyřlůžkových bude dohromady čtyřikrát více dětí než v třílůžkových?
  11. Koule
    spheres_1 V urně je 8 bílých a 6 černých koulí. Náhodně vytáhneme 4 koule. Jaká je pravděpodobnost, že mezi nimi budou 2 bílé?
  12. Kino 6
    cinema2_3 Kino navštivilo celkem za 3 dny 890 osob. 2. den to bylo 3x vice než 1. den a 3.den navštivilo kino o 50 osob vice nez 2.den. Kolik osob navštivilo kino v jednotlive dny?
  13. Loterie 2
    loto Jaká je pravděpodobnost že v loterií, v níž se losuje 5 čísel z 50 vyhraješ první cenu?
  14. V ovocném
    stromy_7 V ovocném sadě vysadili 25 stromků jabloni, 20 hrušek, 15 švestek a 40 meruněk. Silný pozdní mráz však zničil pětinu ze všech nově vysazených stromků. Naneštěstí to byly všechno stromky jednoho druhu ovoce. Jaká je pravděpodobnost, že vymřeli švestky?
  15. Po zahradě
    zajic_7 Po zahradě běhají slepice a králíci, 22 hlav a 62 nohou, kolik je kterých?
  16. Pravděpodobnosti
    Venn_diagram Pokud P (A) = 0.62 P (B) = 0.78 a P (A ∩ B) = 0.26, vypočítejte následující pravděpodobnosti (zjednotenia. průniků, opačných jevů a jejich kombinací):
  17. Chlapci
    losy Ve třídě je 18 dívek a 13 chlapců. Pro dozor o přestávkách se losem určí 4 žáci. Jaká je pravděpodobnost, že to budou sami chlapci?