Přímé úměry

z daných námětů sestav příklady přímé úměry: počet dělníků, počet výrobků, čas na jeden výrobek, počet pracovních hodin, výše výdělku.






Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto slovní úlohy jsou potřebné tyto znalosti z matematiky:

Další podobné příklady:

  1. Hotel
    hotel Hotel má p pater, na každém patře je i pokojů, z nichž je třetina jednolůžkových a ostatní jsou dvoulůžkové. Vyjádřete počet lůžek v hotelu.
  2. Běžci
    metals Pro tři běžce (umístěné na 1. až 3. místě) je připraveno 30 čokolád, které se jim mají rozdělit v poměru 3:2:1 Kolik bonbonů každý dostane?
  3. Za víkend
    books_23 Za víkend potřebujete přečíst 105 stránek knihy. Víte, že čas, který četbě můžete věnovat v sobotu a v neděli je v poměru 3:4. Kolik stran si naplánujete na sobotu a kolik na neděli?
  4. Sedminásobek
    num_3 Sedminásobek čísla zmenšeného o 3 je tak velký jako trojnásobek téhož čísla zvětšeného o 7. Které číslo má tuto vlastnost?
  5. Táboř 4
    children_10 Na táboře šla jednoho dne polovina chlapců na výlet, třetina se šla koupat a 17 chlapců mělo různé služby v táboře. Kolik chlapců bylo celkem na táboře? Kolik chlapců bylo na výletě a kolik se jich koupalo?
  6. Disjunktní
    sets Kolik prvků má sjednocení a průnik dvou disjunktních množin, pokud první množina má 1 prvků a druhá 8 prvků.
  7. Rovnice
    fun3_3 Řešte rovnici a proveďte zkoušku: 2(4x + 3) - 2 = 6 - 5(1 - x)
  8. Rovnice 29
    eq222_18 Řešte následujíci rovnici: 2 ( 2x + 3 ) = 8 ( 1 - x) -5 ( x -2 )
  9. Teta
    street Lada přijel k tete. Cestou si všiml, že domy po levé strane ulice mají lichá čísla a na pravé straňe sudá čísla. V ulici, kde bydlí teta, je 5 domů se sudým číslem, které obsahuje alespoň jednou číslici 6. Jaké číslo měl poslední dům? Vedle v ulici jsou
  10. Mirek a Zuzka
    mo_1 Obdélník je rozdělený na 7 políček. Na každé políčko se má napsat právě jedno z čísel 1, 2 a 3. Mirek tvrdí, že to lze provést tak, aby součet dvou vedle sebe napsaných čísel byl pokaždé jiný. Zuzka naopak tvrdí, že to možné není. Rozhodněte, kdo z nich
  11. Zaokrouhli
    rounding 0.8009 zaokrouhli na jednotky, desetiny, setiny.
  12. Rovnice
    linear_eq Řešte rovnici a provedte zkoušku: 1-(x-x/7-1/7)= 7-9x/2 +5/2
  13. Na tisíciny
    approx Následující čísla zaokrouhli na tisíciny:
  14. Číselný had
    snakes-numeric Vytvoř z rovnice číselného hada a vyřeš: 2x - 5 = 7 4x+1/3 = 7 3(x-2)+4 = 7
  15. Rovnice 25
    eq222_13 Řešte rovnice: (3n-3) / 3= (9+2n) / 2 2x/4 - 3 = 1/2x + 1
  16. Alej
    stromy_6 Alej měří a metrů. Na začátku a na konci je zasazen topol. Kolik dalších topolů třeba dosadit, aby vzdálenost mezi topoly byla 15 metrů?
  17. Rovnica
    rovnica Řešte rovnici: 5-y/3-6-4y/5=0