Kombinace 2tr

Z kolika prvků můžeme vytvořit 990 kombinací 2. třídy bez opakování?

Výsledek

n =  45

Řešení:

Textové řešení n =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto slovní úlohy jsou potřebné tyto znalosti z matematiky:

Hledáte pomoc s výpočtem kořenů kvadratické rovnice? Chceš si dát spočítat kombinační číslo?

Další podobné příklady:

  1. Kombinace 2. třídy
    color_circle Z kolik prvků je možné vytvořit 4560 kombinaci druhé třídy?
  2. Kombinatorická
    trezor_1 Z kolika prvků je možno utvořit šestkrát víc kombinací čtvrté třídy než kombinací druhé třídy?
  3. Akvárium
    zebra_fish Akvárium v obchodě se zvířátky má 8 zebra rybiček. Kolika různými způsoby může Peter vybrat 2 zebra rybiček?
  4. Cukrovinky
    cukrovinky Na trzích mají 5 sort bonbónů, jeden váží 31 gramů. Kolika různými způsoby může zákazník koupit 1.519 kg bonbónů.
  5. Zkoušení
    examination Ve třídě je 21 žáků. Kolika způsoby lze vybrat two na vyzkoušení?
  6. Variace 4/2
    pantagram_1 Určete počet prvků jestliže je počet variací čtvrté třídy bez opakování 600-krát větší než počet variací druhé třídy bez opakování.
  7. Oddíl
    skauti_3 Oddíl má 18 členů: 10 dívek 6 chlapců a 2 vedoucí. Kolik různých hlídek je možno vytvořit, aby v hlídce byli 2 chlapci, 3 dívky a 1 vedoucí?
  8. Trojice
    trojka Kolik různých trojic lze vybrat ze skupiny 38 studentů?
  9. Akordy
    chords Kolik 4-tones akordů (akord = souzvuk současně znějících různých tónů) lze zahrát z 7 tónů?
  10. Výpočet KČ
    color_combinations Vypočítejte: ?
  11. Kořeny
    parabola Určitě v kvadratické rovnici absolutní člen q tak, aby rovnice měla reálný dvojnásobný kořen a tento kořen x vypočítejte: ?
  12. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?
  13. Rovnice
    calculator_2 Rovnice ? má jeden kořen x1 = 8. Určitě koeficient b a druhý kořen x2.
  14. Diskriminant
    Quadratic_equation_discriminant Určitě diskriminant rovnice: ?
  15. Stačí dosedit
    kvadrat_2 Určete kořen kvadratické rovnice: 3x2-4x + (-4) = 0.
  16. Rovnice v podílovém tvaru
    eq1_4 Rešte rovnici v podílovém tvaru: 6x*(3x-2)/x+7=0
  17. Kvadr. funcke
    parabola1 Které z bodů patří funkcí f:y= 2x2- 3x + 1 : A(-2, 15) B (3,10) C (1,4)