Kvadratická rovnice

Určitě čísla b, c tak aby čísla x1 = -1 a x2 = 3 byly kořeny kvadratické rovnice:

-3x **2 + b x + c = 0 ; ;

Výsledek

b =  6
c =  9

Řešení:

Textové řešení b =
Textové řešení c =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto slovní úlohy jsou potřebné tyto znalosti z matematiky:

Hledáte pomoc s výpočtem kořenů kvadratické rovnice?

Další podobné příklady:

  1. Kořeny
    parabola Určitě v kvadratické rovnici absolutní člen q tak, aby rovnice měla reálný dvojnásobný kořen a tento kořen x vypočítejte: ?
  2. Rovnice
    calculator_2 Rovnice ? má jeden kořen x1 = 8. Určitě koeficient b a druhý kořen x2.
  3. Diskriminant
    Quadratic_equation_discriminant Určitě diskriminant rovnice: ?
  4. Rovnica - počet korenu
    photomath Dosaď postupně čísla /0,1,2,3/ do rovnice: (x - 1)(x - 3)(x + 1) = 0 Která z nich jsou jejím řešením? Existuje ještě další číslo, které je řešením této rovnice?
  5. Součin
    floring Součin dvou po sobě jdoucích lichých čísel je 8463. Které jsou to čísla?
  6. Stačí dosedit
    kvadrat_2 Určete kořen kvadratické rovnice: 3x2-4x + (-4) = 0.
  7. Variace 4/2
    pantagram_1 Určete počet prvků jestliže je počet variací čtvrté třídy bez opakování 600-krát větší než počet variací druhé třídy bez opakování.
  8. Kvadratická rovnice
    parabola_1 Řešte kvadratickou rovnici: 2x2-58x+396=0
  9. Kv. rovnica
    eq222_11 Riešte rovnicu (y+5/y-3) + (y+3/y-5) =3
  10. Kvadr. funcke
    parabola1 Které z bodů patří funkcí f:y= 2x2- 3x + 1 : A(-2, 15) B (3,10) C (1,4)
  11. Koruny
    penize_1.JPG Žáci čtyř ročníků uspořili dohromady n=45000 korun. Z toho první ročník uspořil jednu třetinu, druhý jednu třetinu zbytku, třetí dvě pětiny dalšího zbytku a čtvrtý zbývající část. Kolik korun uspořil každý ročník ?
  12. Eliminační metoda
    rovnice_1 Řešte soustavu lineárních rovnic eliminační metodou: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  13. Třída
    skola_24 V 7. Třídě je o 2 žáky více než v 8. Třídě. Kdyby se počet žáků 7. Třídy zvýšil o 7 a počet žáků 8. Třídy zvýšil o třetinu původního počtu, byl by v obou třídách stejný počet žáků. Kolik žáků je 7. A v 8. Třídě?
  14. Tři dílny
    workers_24 Ve třech dílnách závodu pracuje 2743 lidí. Ve druhé dílně pracuje o 140 lidí více než v první a ve třetí dílně 4,2-krát více než v druhé. Kolik lidí pracuje v každé dílně?
  15. AP - lehký
    sigma_1 Urči prvních 9 členů posloupnosti, pokud a10 = -1, d = 4
  16. Posloupnost
    seq_1 Zapište prvních 6 členů této posloupnosti: a1 = 5 a2 = 7 an+2 = an+1 +2 an
  17. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?