Kužel S2V

Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 dm2.

Vypočítejte objem tohoto kužele.

Správný výsledek:

V =  881,1 dm3

Řešení:

A=126 π180=126 3.14161802.1991 rad S=415 dm2  S=πs2 A/(2π)  s=2 S/A=2 415/2.199119.4274 dm r=A s/(2π)=2.1991 19.4274/(2 3.1416)6.7996 dm h=s2r2=19.427426.7996218.1986 dm  V=13 π r2 h=13 3.1416 6.79962 18.1986=881.1 dm3A=126 \cdot \ \dfrac{ \pi }{ 180 }=126 \cdot \ \dfrac{ 3.1416 }{ 180 } \doteq 2.1991 \ \text{rad} \ \\ S=415 \ \text{dm}^2 \ \\ \ \\ S=\pi s^2 \cdot \ A / (2 \pi) \ \\ \ \\ s=\sqrt{ 2 \cdot \ S/A }=\sqrt{ 2 \cdot \ 415/2.1991 } \doteq 19.4274 \ \text{dm} \ \\ r=A \cdot \ s/(2 \pi)=2.1991 \cdot \ 19.4274/(2 \cdot \ 3.1416) \doteq 6.7996 \ \text{dm} \ \\ h=\sqrt{ s^2-r^2 }=\sqrt{ 19.4274^2-6.7996^2 } \doteq 18.1986 \ \text{dm} \ \\ \ \\ V=\dfrac{ 1 }{ 3 } \cdot \ \pi \cdot \ r^2 \cdot \ h=\dfrac{ 1 }{ 3 } \cdot \ 3.1416 \cdot \ 6.7996^2 \cdot \ 18.1986=881.1 \ \text{dm}^3



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby, které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám prosím svůj komentář ku úloze - postřehy, myšlenku nebo se něco zeptejte. Děkujeme že si takto pomáháme navzájem - žáci, studenti, učitelé, rodiče a tvůrci příkladů.

Zobrazuji 3 komentáře:
#
Žák
not bad

#
Žák
Správně má být: s = sqrt (2*S/A)

#
Dr Math
dekujeme, mate recht (pravdu) ;)

avatar









Tipy na související online kalkulačky
Potřebujete pomoci sčítat, zkrátít či vynásobit zlomky? Zkuste naši zlomkovou kalkulačku.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • Je dán 8
    kuzel3 Je dán rotační kužel: r = 6,8 cm s = 14,4 cm vypočítejte obsah plášte S2, výsku h a objem V.
  • Výška 13
    kuzel2 Výška 9cm průměr 24cm kužel - vypočítej jeho objem a povrch.
  • Kuželovitá svíčka
    cone_1 Kuželovitá svíčka má průměr podstavy 20 cm a stranu 30 cm. Kolik dm3 vosku bylo třeba na její výrobu?
  • Násyp
    nasyp Železniční násyp 300 m dlouhý má příčný řez tvaru rovnoramenného lichoběžníku se základnami 14 m a 8 m. Ramena lichoběžníku jsou dlouhé 5 m. Vypočtěte kolik m3 zeminy je v násypu?
  • Silniční 4
    nasyp Silniční násep má příčný řez tvaru rovnoramenného lichoběžníku o základnách délek 16 m a 10 m a s rameny délky 5 m. Kolik metrů krychlových zeminy je v náspu o délce 400 m?
  • Vypočítejte 30
    lich_hranol Vypočítejte objem čtyřbokého hranolu, který má podstavu rovnoramenného lichoběžníku se základnami 10 cm a 4 cm, vzdálených od sebe 6 cm . Výška hranolu je 25 cm . Můžeš se zamyslet, jak by bylo možné vypočítat povrch?
  • Trojboký hranol
    prism3s Pravidelný trojboký hranol je vysoký 7 cm. Jeho podstava je rovnostranný trojúhelník, jehož výška je 3 cm. Vypočítejte povrch a objem tohoto hranolu.
  • Šestiboký hranol 2
    hexagon_prism2 Vypočítej objem pravidelného šestibokého hranolu jehož tělesové úhlopříčky jsou 24cm a 25cm.
  • Stěnové úhlopříčky
    cuboid Stěnové úhlopříčky kvádru mají velikosti √29cm, √34cm, √13cm. Vypočtěte povrch a objem kvádru.
  • Vypočítejte 32
    cube_diagonals Vypočítejte délku stěnové úhlopříčky krychle o objemu 7, 40 dm čtverečních. Výsledek uveďte s přesností na milimetry.
  • Vypočtěte 6
    komoly_jehlan Vypočtěte povrch a objem pravidelného čtyřbokého jehlanu, je-li hrana dolní podstavy 18 cm a hrana horní podstavy 15 cm. Stěnová výška je 9 cm.
  • Trojboký hranol
    hranol3b Podstava kolmého trojbokého hranolu je pravoúhlý trojúhelník, jehož přepona je 10cm a jedna odvěsna 8cm. Výška hranolu je 75% z obvodu podstavy. Vypočtěte objem a povrch hranolu.
  • Komolý kužel
    frustum-of-a-right-circular-cone Vypočtěte objem komolého kužele, jehož dna se skládají z vepsaného kruhu a kruhu odepsaného na protilehlých stěnách kostky s délkou hrany a = 1.
  • Šestiboký jehlan
    hexa_pyramid Vypočítejte objem pravidelného šestibokého jehlanu, jehož podstavná hrana má délku 12cm a boční hranu 20cm.
  • Vypočítejte 31
    krychle Vypočítejte povrch, objem a délku tělesové úhlopříčky krychle o hraně délky 4 dm.
  • Cube in sphere
    sphere_in_cube The cube is inscribed in a sphere with a radius r = 6 cm. What percentage is the volume of the cube from the volume of the ball?
  • Vypočítej 40
    jehlan Vypočítej objem pravidelného čtyřbokého jehlanu, který má velikost podstavné hrany a = 8 cm a velikost boční hrany h = 9 cm.