# Kvádr

#0  xxx() called at [/LinSys.php:671]
#1  LinSys::tryIntegerEquations(Array ([0] => D,[1] => S,[2] => a,[3] => b,[4] => c,[5] => e,[6] => i,[7] => m,[8] => n,[9] => o,[10] => p,[11] => r,[12] => t,[13] => u,[14] => v,[15] => x,[16] => y), Array ([0] => x^2 -1300x +360000 =0,[1] => a=1,[2] => b=-1300,[3] => c=360000,[4] => D = b^2 - 4ac = 1300^2 - 4** 1 ** 360000 = 250000,[5] => xx{1.2} = frac{ -b pm sqrt{ D } }{ 2a } = frac{ 1300 pm sqrt{ 250000 } }{ 2 },[6] => xx{1.2} = frac{ 1300 pm 500 }{ 2 },[7] => xx{1.2} = 650 pm 250,[8] => xx{1} = 900,[9] => xx{2} = 400,[10] => (x -900) (x -400) = 0), 1) called at [/LinSys.php:344]
#2  LinSys::SolveInner(x^2 -1300x +360000 =0
a=1; b=-1300; c=360000
D = b^2 - 4ac = 1300^2 - 4** 1 ** 360000 = 250000
D>0

xx{1.2} = frac{ -b pm sqrt{ D } }{ 2a } = frac{ 1300 pm sqrt{  250000 } }{ 2 }
xx{1.2} = frac{ 1300 pm 500 }{ 2 }
xx{1.2}  = 650 pm 250
xx{1}  = 900
xx{2}  = 400

text{ Soucinovy tvar: }
(x -900) (x -400) = 0, , 1, linsys, 1, , 1, 1) called at [/LinSys.php:220]
#3  LinSys::Solve(x^2 -1300x +360000 =0
a=1; b=-1300; c=360000
D = b^2 - 4ac = 1300^2 - 4** 1 ** 360000 = 250000
D>0

x_{1,2} = \frac{ -b \pm \sqrt{ D } }{ 2a } = \frac{ 1300 \pm \sqrt{  250000 } }{ 2 }
x_{1,2} = \frac{ 1300 \pm 500 }{ 2 }
x_{1,2}  = 650 \pm 250
x_{1}  = 900
x_{2}  = 400

\text{ Soucinovy tvar: }
(x -900) (x -400) = 0, , 1, linsys, 1, , 1) called at [/Example_Generic.php:87]
#4  Example_Generic->GenerateSolveVector(stdClass Object ([example_id] => 511,[title_sk] => Kváder,[title_en] => Cuboid,[title_cz] => Kvádr,[add_date] => 2012-12-10 17:00:08,[img] => cuboid.jpg,[visible] => 1,[text_sk] => Kváder s hranou a=$a cm a telesovou uhlopriečkou u=$u cm má objem V=$V cm^3. Vypočítajte veľkosti ostatných hrán.,[text_en] => Cuboid with edge a=$a cm and body diagonal u=$u cm has volume V=$V cm^3. Calculate the length of the other edges.,[text_cz] => Kvádr s hranou a=$a cm a tělesových úhlopříčkou u=$u cm má objem V=$V cm^3. Vypočítejte velikosti ostatních hran.,[input_vector] => do {$a = rand(5,25);
$b = rand(5,40);$c = rand(5,40);

$u = round(sqrt($a*$a+$b*$b+$c*$c) ,4); }while(strlen($u)>4);

$V =$a*$b*$c;

$b *= 45;$c *= 67;,[output_vector] => $x->in= "b=#cm";$y->in= "c=#cm";

$x->N=1;$y->N=1;

$eq = array('x','y');$x->wolfram = $y->wolfram = "$V=$a*b*c;$u^2=$a^2+b^2+c^2"; // ; b>0$x->val = $b/45;$y->val = $c/67;$Va = $V/$a;
$uu =$u*$u -$a*$a;$k =  pow($Va,2);$eq = QTex(1,-$uu,$k, 'x',1);
$x->tex = "V = abc$V = $a bc bc =$Va

u = \\sqrt{ a^2+b^2+c^2 }

$u^2 =$a^2 + b^2 + c^2
$uu = b^2 + c^2$uu = \\frac{ $k}{c^2} + c^2 c^4-$uu c^2 + $k = 0 x = c^2$eq

b>0; c>0

b = RES";

$y->tex = "c=RES"; ,[user_id] => 12,[approved] => 1,[cnt_views] => 58589,[cnt_solved] => 2336,[cnt_solved_ok] => 42,[focus] => 1,[preview_sk] => Kváder s hranou a=6 cm a telesovou uhlopriečkou u=26 cm má objem V=1152 cm^3. Vypočítajte veľkosti ostatných hrán.,[preview_en] => Cuboid with edge a=16 cm and body diagonal u=45 cm has volume V=11840 cm^3. Calculate the length of the other edges.,[preview_cz] => Kvádr s hranou a=12 cm a tělesových úhlopříčkou u=38 cm má objem V=7200 cm^3. Vypočítejte velikosti ostatních hran.,[preview_vector_sk] => O:8:"stdClass":5:{s:1:"a";i:6;s:1:"b";i:360;s:1:"c";i:1608;s:1:"u";d:26;s:1:"V";i:1152;},[preview_vector_en] => O:8:"stdClass":5:{s:1:"a";i:16;s:1:"b";i:900;s:1:"c";i:2479;s:1:"u";d:45;s:1:"V";i:11840;},[preview_vector_cz] => O:8:"stdClass":5:{s:1:"a";i:12;s:1:"b";i:900;s:1:"c";i:2010;s:1:"u";d:38;s:1:"V";i:7200;},[last_regenerate] => 2019-07-14 19:36:03,[external_url] => ,[suggestion_id] => 0,[fulltext_sk] => ~ kvader s hranou a=6 cm a telesovou uhloprieckou u=26 ma objem v=1152 cm^3 vypocitajte velkosti ostatnych hran pytagorova veta planimetria kvadraticka rovnica algebra aritmetika odmocnina pravouhly trojuholnik stereometria kvader fyzikalne jednotky dlzka sustava rovnic telesa telesova uhlopriecka bikvadraticka 9 rocnik stredna skola 511 ~,[fulltext_en] => ~ cuboid with edge a=16 cm and body diagonal u=45 has volume v=11840 cm^3 calculate the length of other edges pythagorean theorem planimetrics algebra quadratic equation arithmetic square root right triangle cuboid solid geometry units system equations space bikvadratic 9t 9 th grade 14y 4 y high school 511 ~,[fulltext_cz] => ~ kvadr s hranou a=12 cm a telesovych uhloprickou u=38 ma objem v=7200 cm^3 vypocitejte velikosti ostatnich hran pythagorova veta planimetrie algebra kvadraticka rovnice aritmetika odmocnina pravouhly trojuhelnik stereometrie kvadr fyzikalni jednotky delka soustava rovnic telesa telesova uhlopricka bikvadraticka 9 rocnik stredni skola 511 ~,[english_last_modified] => 0000-00-00 00:00:00,[title] => Kvádr,[text] => Kvádr s hranou a=$a cm a tělesových úhlopříčkou u=$u cm má objem V=$V cm^3. Vypočítejte velikosti ostatních hran.), stdClass Object ([a] => 12,[b] => 900,[c] => 2010,[u] => 38,[V] => 7200)) called at [/Example_Generic.php:869]
#5  Example_Generic->Run(stdClass Object ([example_id] => 511,[title_sk] => Kváder,[title_en] => Cuboid,[title_cz] => Kvádr,[add_date] => 2012-12-10 17:00:08,[img] => cuboid.jpg,[visible] => 1,[text_sk] => Kváder s hranou a=$a cm a telesovou uhlopriečkou u=$u cm má objem V=$V cm^3. Vypočítajte veľkosti ostatných hrán.,[text_en] => Cuboid with edge a=$a cm and body diagonal u=$u cm has volume V=$V cm^3. Calculate the length of the other edges.,[text_cz] => Kvádr s hranou a=$a cm a tělesových úhlopříčkou u=$u cm má objem V=$V cm^3. Vypočítejte velikosti ostatních hran.,[input_vector] => do {$a = rand(5,25);
$b = rand(5,40);$c = rand(5,40);

$u = round(sqrt($a*$a+$b*$b+$c*$c) ,4); }while(strlen($u)>4);

$V =$a*$b*$c;

$b *= 45;$c *= 67;,[output_vector] => $x->in= "b=#cm";$y->in= "c=#cm";

$x->N=1;$y->N=1;

$eq = array('x','y');$x->wolfram = $y->wolfram = "$V=$a*b*c;$u^2=$a^2+b^2+c^2"; // ; b>0$x->val = $b/45;$y->val = $c/67;$Va = $V/$a;
$uu =$u*$u -$a*$a;$k =  pow($Va,2);$eq = QTex(1,-$uu,$k, 'x',1);
$x->tex = "V = abc$V = $a bc bc =$Va

u = \\sqrt{ a^2+b^2+c^2 }

$u^2 =$a^2 + b^2 + c^2
$uu = b^2 + c^2$uu = \\frac{ $k}{c^2} + c^2 c^4-$uu c^2 + $k = 0 x = c^2$eq

b>0; c>0

b = RES";

$y->tex = "c=RES"; ,[user_id] => 12,[approved] => 1,[cnt_views] => 58589,[cnt_solved] => 2336,[cnt_solved_ok] => 42,[focus] => 1,[preview_sk] => Kváder s hranou a=6 cm a telesovou uhlopriečkou u=26 cm má objem V=1152 cm^3. Vypočítajte veľkosti ostatných hrán.,[preview_en] => Cuboid with edge a=16 cm and body diagonal u=45 cm has volume V=11840 cm^3. Calculate the length of the other edges.,[preview_cz] => Kvádr s hranou a=12 cm a tělesových úhlopříčkou u=38 cm má objem V=7200 cm^3. Vypočítejte velikosti ostatních hran.,[preview_vector_sk] => O:8:"stdClass":5:{s:1:"a";i:6;s:1:"b";i:360;s:1:"c";i:1608;s:1:"u";d:26;s:1:"V";i:1152;},[preview_vector_en] => O:8:"stdClass":5:{s:1:"a";i:16;s:1:"b";i:900;s:1:"c";i:2479;s:1:"u";d:45;s:1:"V";i:11840;},[preview_vector_cz] => O:8:"stdClass":5:{s:1:"a";i:12;s:1:"b";i:900;s:1:"c";i:2010;s:1:"u";d:38;s:1:"V";i:7200;},[last_regenerate] => 2019-07-14 19:36:03,[external_url] => ,[suggestion_id] => 0,[fulltext_sk] => ~ kvader s hranou a=6 cm a telesovou uhloprieckou u=26 ma objem v=1152 cm^3 vypocitajte velkosti ostatnych hran pytagorova veta planimetria kvadraticka rovnica algebra aritmetika odmocnina pravouhly trojuholnik stereometria kvader fyzikalne jednotky dlzka sustava rovnic telesa telesova uhlopriecka bikvadraticka 9 rocnik stredna skola 511 ~,[fulltext_en] => ~ cuboid with edge a=16 cm and body diagonal u=45 has volume v=11840 cm^3 calculate the length of other edges pythagorean theorem planimetrics algebra quadratic equation arithmetic square root right triangle cuboid solid geometry units system equations space bikvadratic 9t 9 th grade 14y 4 y high school 511 ~,[fulltext_cz] => ~ kvadr s hranou a=12 cm a telesovych uhloprickou u=38 ma objem v=7200 cm^3 vypocitejte velikosti ostatnich hran pythagorova veta planimetrie algebra kvadraticka rovnice aritmetika odmocnina pravouhly trojuhelnik stereometrie kvadr fyzikalni jednotky delka soustava rovnic telesa telesova uhlopricka bikvadraticka 9 rocnik stredni skola 511 ~,[english_last_modified] => 0000-00-00 00:00:00,[title] => Kvádr,[text] => Kvádr s hranou a=$a cm a tělesových úhlopříčkou u=$u cm má objem V=$V cm^3. Vypočítejte velikosti ostatních hran.)) called at [/index_real.php:185]
#6  HackMath->ExampleDetail() called at [/index_real.php:316]
#7  HackMath->ExampleAction() called at [/index_real.php:461]
#8  HackMath->Run() called at [/index_real.php:815]
#9  include(/index_real.php) called at [/index.php:41]