# Sto známek

Je sto dopisních známek a stojí sto korun. Jsou tam známky dvacetiháléřové, korunové, dvojkorunové a pětikorunové. Kolik je kterých? Kolik má úloha řešení?

Výsledek

n =  66

#### Řešení:

x1= 0.2*10 +1*85+2*4+5*1 = 100
x2= 0.2*15 +1*76+2*8+5*1 = 100
x3= 0.2*15 +1*79+2*4+5*2 = 100
x4= 0.2*20 +1*67+2*12+5*1 = 100
x5= 0.2*20 +1*70+2*8+5*2 = 100
x6= 0.2*20 +1*73+2*4+5*3 = 100
x7= 0.2*25 +1*58+2*16+5*1 = 100
x8= 0.2*25 +1*61+2*12+5*2 = 100
x9= 0.2*25 +1*64+2*8+5*3 = 100
x10= 0.2*25 +1*67+2*4+5*4 = 100
x11= 0.2*30 +1*49+2*20+5*1 = 100
x12= 0.2*30 +1*52+2*16+5*2 = 100
x13= 0.2*30 +1*55+2*12+5*3 = 100
x14= 0.2*30 +1*58+2*8+5*4 = 100
x15= 0.2*30 +1*61+2*4+5*5 = 100
x16= 0.2*35 +1*40+2*24+5*1 = 100
x17= 0.2*35 +1*43+2*20+5*2 = 100
x18= 0.2*35 +1*46+2*16+5*3 = 100
x19= 0.2*35 +1*49+2*12+5*4 = 100
x20= 0.2*35 +1*52+2*8+5*5 = 100
x21= 0.2*35 +1*55+2*4+5*6 = 100
x22= 0.2*40 +1*34+2*24+5*2 = 100
x23= 0.2*40 +1*37+2*20+5*3 = 100
x24= 0.2*40 +1*40+2*16+5*4 = 100
x25= 0.2*40 +1*43+2*12+5*5 = 100
x26= 0.2*40 +1*46+2*8+5*6 = 100
x27= 0.2*40 +1*49+2*4+5*7 = 100
x28= 0.2*45 +1*28+2*24+5*3 = 100
x29= 0.2*45 +1*31+2*20+5*4 = 100
x30= 0.2*45 +1*34+2*16+5*5 = 100
x31= 0.2*45 +1*37+2*12+5*6 = 100
x32= 0.2*45 +1*40+2*8+5*7 = 100
x33= 0.2*45 +1*43+2*4+5*8 = 100
x34= 0.2*50 +1*22+2*24+5*4 = 100
x35= 0.2*50 +1*25+2*20+5*5 = 100
x36= 0.2*50 +1*28+2*16+5*6 = 100
x37= 0.2*50 +1*31+2*12+5*7 = 100
x38= 0.2*50 +1*34+2*8+5*8 = 100
x39= 0.2*50 +1*37+2*4+5*9 = 100
x40= 0.2*55 +1*16+2*24+5*5 = 100
x41= 0.2*55 +1*19+2*20+5*6 = 100
x42= 0.2*55 +1*22+2*16+5*7 = 100
x43= 0.2*55 +1*25+2*12+5*8 = 100
x44= 0.2*55 +1*28+2*8+5*9 = 100
x45= 0.2*55 +1*31+2*4+5*10 = 100
x46= 0.2*60 +1*10+2*24+5*6 = 100
x47= 0.2*60 +1*13+2*20+5*7 = 100
x48= 0.2*60 +1*16+2*16+5*8 = 100
x49= 0.2*60 +1*19+2*12+5*9 = 100
x50= 0.2*60 +1*22+2*8+5*10 = 100
x51= 0.2*60 +1*25+2*4+5*11 = 100
x52= 0.2*65 +1*4+2*24+5*7 = 100
x53= 0.2*65 +1*7+2*20+5*8 = 100
x54= 0.2*65 +1*10+2*16+5*9 = 100
x55= 0.2*65 +1*13+2*12+5*10 = 100
x56= 0.2*65 +1*16+2*8+5*11 = 100
x57= 0.2*65 +1*19+2*4+5*12 = 100
x58= 0.2*70 +1*1+2*20+5*9 = 100
x59= 0.2*70 +1*4+2*16+5*10 = 100
x60= 0.2*70 +1*7+2*12+5*11 = 100
x61= 0.2*70 +1*10+2*8+5*12 = 100
x62= 0.2*70 +1*13+2*4+5*13 = 100
x63= 0.2*75 +1*1+2*12+5*12 = 100
x64= 0.2*75 +1*4+2*8+5*13 = 100
x65= 0.2*75 +1*7+2*4+5*14 = 100
x66= 0.2*80 +1*1+2*4+5*15 = 100

Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
Buďte první, kdo napíše komentář!

#### K vyřešení tohoto slovní úlohy jsou potřebné tyto znalosti z matematiky:

Řešíte Diofantovské problémy a hledáte kalkulačku diofantovských celočíselných rovnic?

## Další podobné příklady:

1. Potřebuji
Potřebuji si koupit sešity a obaly. Jeden sešit stojí 12,-Kč, jeden obal stojí 3,-Kč. Mám jednu padesátikorunu a jednu dvacetikoruna. .Kolik sešitů a obalů si za to můžu koupit? Vymysli více možností.
2. V hotelu
V hotelu Holiday mají na každém patře stejný počet pokojů. Pokoje jsou číslovány přirozenými čísly postupně od prvního patra, žádné číslo není vynecháno a každý pokoj má jiné číslo. Do hotelu přicestovali tři turisté. První se ubytoval v pokoji číslo 50 n
3. GP tři členy
Druhý a třetí člen geometrické posloupnosti jsou 24 a 12 (c +1) v tomto pořadí. Za předpokladu, že součet prvních tří členů posloupnosti je 76, určitě hodnotu c.
4. Z9–I–3 - 2017 kafemlýnky2
Roboti Robert a Hubert skládají a rozebírají kafemlýnky. Přitom každý z nich kafemlýnek složí čtyřikrát rychleji, než jej sám rozebere. Když ráno přišli do dílny, několik kafemlýnků už tam bylo složeno. V 7:00 začal Hubert skládat a Robert rozebírat, přes
5. Úsečky
Úsečky délek 67 cm a 3.1 dm máme rozdělit na stejné díly tak, aby jejich délka v centimetrech byla vyjádřena celým číslem. Kolika způsoby je můžeme dělit?
6. Stěny kvádru
Vypočítejte objem kvádru, pokud jeho různé stěny mají obsahy 195cm², 135cm² a 117cm².
7. Eur za kus
Za 80 výrobků dvojí jakosti se utržilo celkem 175 Eur. Jestliže výrobek prvé jakosti se prodával po n Eur za kus (n přirozené číslo) a výrobek druhé jakosti po dvou Eur za kus, kolik kusů prvé jakosti bylo prodáno?
Najděte největší přirozené číslo d, které má tu vlastnost, že pro libovolné přirozené číslo n je hodnota výrazu V(n)=n4+11n2−12 dělitelná číslem d.
9. Stromky
Sadař koupil stromky za 960 KČ. Kdyby byl každý stromek o 12 KČ lacinější, byl by sadař za tytéž peníze dostal o 4 stromky více. Kolik stromků koupil?
10. Délky stran a úhly
Vypočtěte délky stran a úhly v pravoúhlém trojúhelníku. S = 210, o = 70.
11. MO Z8-I-1 2018
Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 238. Kdyby totéž provedli za čtyři roky, byl by tento součin 378. Určete součet současných věků Ferdy a Davida.
12. Z7–I–5 MO 2018
V zahradnictví Rose si jedna prodejna objednala celkem 120 růží v barvě červené a žluté, druhá prodejna celkem 105 růží v barvě červené a bílé a třetí prodejna celkem 45 růží v barvě žluté a bílé. Zahradnictví zakázku splnilo, a to tak, že růží stejné bar
13. Dvojciferné 3
Ciferný součet dvojciferného čísla je devět. Když čísla obrátíme a vynásobíme původním dvojciferným číslem, dostaneme číslo 2430. Jaké je původní dvojciferné číslo?
14. Délky stran AP
Délky stran pravoúhlého trojúhelníka s delší odvěsnou 12 cm tvoří aritmetickou posloupnost. Obsah trojúhelníka je?
15. Rovnice hyperboly
Napište rovnici hyperboly se středem S [0; 0], která prochází body: A [5; 3] B [8; -10]
16. Připočteme-li
Připočteme-li totéž číslo x k číslům -1,3,15,51 dostaneme první 4 členy geometrické posloupnosti. Vypočtěte číslo x a první 4 členy geometrické posloupnosti.
17. Tři členy GP
Součet tří čísel v GP (geometrické posloupnosti) je 21 a součet jejich čtverců je 189. Najděte tato čísla.