Sto známek

Je sto dopisních známek a stojí sto korun. Jsou tam známky dvacetiháléřové, korunové, dvojkorunové a pětikorunové. Kolik je kterých? Kolik má úloha řešení?

Výsledek

n =  66

Řešení:

x1= 0.2*10 +1*85+2*4+5*1 = 100
x2= 0.2*15 +1*76+2*8+5*1 = 100
x3= 0.2*15 +1*79+2*4+5*2 = 100
x4= 0.2*20 +1*67+2*12+5*1 = 100
x5= 0.2*20 +1*70+2*8+5*2 = 100
x6= 0.2*20 +1*73+2*4+5*3 = 100
x7= 0.2*25 +1*58+2*16+5*1 = 100
x8= 0.2*25 +1*61+2*12+5*2 = 100
x9= 0.2*25 +1*64+2*8+5*3 = 100
x10= 0.2*25 +1*67+2*4+5*4 = 100
x11= 0.2*30 +1*49+2*20+5*1 = 100
x12= 0.2*30 +1*52+2*16+5*2 = 100
x13= 0.2*30 +1*55+2*12+5*3 = 100
x14= 0.2*30 +1*58+2*8+5*4 = 100
x15= 0.2*30 +1*61+2*4+5*5 = 100
x16= 0.2*35 +1*40+2*24+5*1 = 100
x17= 0.2*35 +1*43+2*20+5*2 = 100
x18= 0.2*35 +1*46+2*16+5*3 = 100
x19= 0.2*35 +1*49+2*12+5*4 = 100
x20= 0.2*35 +1*52+2*8+5*5 = 100
x21= 0.2*35 +1*55+2*4+5*6 = 100
x22= 0.2*40 +1*34+2*24+5*2 = 100
x23= 0.2*40 +1*37+2*20+5*3 = 100
x24= 0.2*40 +1*40+2*16+5*4 = 100
x25= 0.2*40 +1*43+2*12+5*5 = 100
x26= 0.2*40 +1*46+2*8+5*6 = 100
x27= 0.2*40 +1*49+2*4+5*7 = 100
x28= 0.2*45 +1*28+2*24+5*3 = 100
x29= 0.2*45 +1*31+2*20+5*4 = 100
x30= 0.2*45 +1*34+2*16+5*5 = 100
x31= 0.2*45 +1*37+2*12+5*6 = 100
x32= 0.2*45 +1*40+2*8+5*7 = 100
x33= 0.2*45 +1*43+2*4+5*8 = 100
x34= 0.2*50 +1*22+2*24+5*4 = 100
x35= 0.2*50 +1*25+2*20+5*5 = 100
x36= 0.2*50 +1*28+2*16+5*6 = 100
x37= 0.2*50 +1*31+2*12+5*7 = 100
x38= 0.2*50 +1*34+2*8+5*8 = 100
x39= 0.2*50 +1*37+2*4+5*9 = 100
x40= 0.2*55 +1*16+2*24+5*5 = 100
x41= 0.2*55 +1*19+2*20+5*6 = 100
x42= 0.2*55 +1*22+2*16+5*7 = 100
x43= 0.2*55 +1*25+2*12+5*8 = 100
x44= 0.2*55 +1*28+2*8+5*9 = 100
x45= 0.2*55 +1*31+2*4+5*10 = 100
x46= 0.2*60 +1*10+2*24+5*6 = 100
x47= 0.2*60 +1*13+2*20+5*7 = 100
x48= 0.2*60 +1*16+2*16+5*8 = 100
x49= 0.2*60 +1*19+2*12+5*9 = 100
x50= 0.2*60 +1*22+2*8+5*10 = 100
x51= 0.2*60 +1*25+2*4+5*11 = 100
x52= 0.2*65 +1*4+2*24+5*7 = 100
x53= 0.2*65 +1*7+2*20+5*8 = 100
x54= 0.2*65 +1*10+2*16+5*9 = 100
x55= 0.2*65 +1*13+2*12+5*10 = 100
x56= 0.2*65 +1*16+2*8+5*11 = 100
x57= 0.2*65 +1*19+2*4+5*12 = 100
x58= 0.2*70 +1*1+2*20+5*9 = 100
x59= 0.2*70 +1*4+2*16+5*10 = 100
x60= 0.2*70 +1*7+2*12+5*11 = 100
x61= 0.2*70 +1*10+2*8+5*12 = 100
x62= 0.2*70 +1*13+2*4+5*13 = 100
x63= 0.2*75 +1*1+2*12+5*12 = 100
x64= 0.2*75 +1*4+2*8+5*13 = 100
x65= 0.2*75 +1*7+2*4+5*14 = 100
x66= 0.2*80 +1*1+2*4+5*15 = 100








Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto slovní úlohy jsou potřebné tyto znalosti z matematiky:

Řešíte Diofantovské problémy a hledáte kalkulačku diofantovských celočíselných rovnic?

Další podobné příklady:

  1. 20 a 50 korun
    ducat Vybralo se 1390kč. Kolik bylo 20ti korun a kolik 50ti korun v tomto pořadí? Kolik je řešení?
  2. Obdélník
    rectangles_1 Obvod obdélníku je 22 cm a obsah 30 cm2. Určete jeho rozměry, jsou-li délky stran obdélníku v centimetrech vyjádřeny celými čísly.
  3. Přímka
    negative_slope Daná je přímka, která prochází body A [-3; 22] a B [33; -2]. Určete počet všech bodů této přímky, jejichž obě souřadnice jsou kladná celá čísla.
  4. Židle
    zidle V místnosti jsou čtyřnohé židle, trojnohé verpánky a všechny jsou obsazeny lidmi (po jednom). Spočítali jsem všechny nohy v místnosti a bylo jich celkem 39. Kolik je tam židlí, verpánků a lidí?
  5. Body na kružnici
    coordinates_circle V pravoúhlé soustavě souřadnic s počátkem O je narýsována kružnice k/O 2 cm/. Zapiš pomocí souřadnic všechny body, které leží na kružnici k a jejichž souřadnice jsou celá čísla. Zapiš všechny body, které leží na kružnici l/O 5 cm/a jejichž souřadnice jsou
  6. Rok 2018 jak číslo
    new_year Součin tří kladných čísel je 2018. Která jsou to čísla?
  7. Diofant 2
    1diofantos Je rovnice   ? řešitelná na množině celých čísel Z?
  8. Diofantovská rovnice
    diofantos V množině celých čísel (Z) řešte rovnici: ? Výsledek zapište jako násobek celočíselného parametru ?, (parametr t = ...-2, -1,0,1,2,3... pokud má rovnice nekonečně mnoho řešení)
  9. Cukr - kvádr
    kocky_cukor Pejko dostal od svého pána kvádr složený z navzájem stejných kostek cukru, kterých bylo nejméně 1000 a nejvíce 2000. Pejko kostky cukru odjeda po jednotlivých vrstvách-první den odjedu jednu vrstvu zepředu, druhý den jednu vrstvu zprava a třetí den jednu
  10. Balík
    latky_textil V balíku je méně než 14 m látky. Budeme-li z ní stříhat jen na blůzy nebo jen na šaty, nezůstane nám žádný zbytek. Na jednu blůzu se spotřebuje 1.5 m látky, na jedny šaty 2.4 m. Určete množství látky v balíku.
  11. Za dny
    makak Údržbář se zavázal, že udělá opravářské práce v závodě za 25 dní. Práce však bylo třeba zkrátit, a proto si přibral pomocníka. Celkem udělali všechny opravy za celé dny. Jak dlouho by trvala práce pomocníkovi?
  12. Nekonečné lego
    lego_2 Nekonečné lego - sada obsahuje pouze 6, 9, 20 kilové dílky, které se již nedají obrousit ani zlomit. Tetiváci si je vzali do posilovny a hned z nich začali skládat různé stavby. A samozřejmě si zapisovali, kolik která stavba váží. Všimli si, že 7 kilovou
  13. Máme určitý
    cukriky_13 Máme určitý počet bonbonů a prázdných krabiček. Když dáme bonbony do krabiček po deseti, zbydou 2 bonbony a 8 prázdných krabiček, když po osmi, zbyde 6 bonbonů a 3 krabičky. Kolik bonbonů a prázdných krabiček zbyde, když dáme bonbony do krabiček po devíti
  14. Na školu
    ziaci_6 Na školu chodí méně než 500 žáků. Když se seřadí do dvojic, zbyde 1. Stejně tak při seřazení do 3, 4, 5 i 6. Aź po seřazení po sedmi nezbyde ani jeden žák. Kolik žáků chodí na školu?
  15. Součet 18
    numberline_3 Součet čtyř po sobě následujících celých čísel, z nichž každé následující je o 5 větší, než předcházející, je 2. Určete tato čísla.
  16. Stoly
    ziaci_8 Devátá třída je na celodennim výletě. Dopoledne se výletníci občerstvili v cukrárnĕ. Sedli si po třech ke stolečkúm a obsadili všechna místa. Při obědě seděli u stolu po čtyřech a opět obsadili všechna místa. A to tam bylo o dva stoly méně něž v cukrárnĕ.
  17. Výraz
    numbers_49 Vypočítejte: (-1)2 . 12 – 6 : 3 + (-3) . (-2) + 22 – (-3) . 2