Lichoběžník MO

Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé.

Vypočítejte obvod a obsah takéhoto lichobežníka.

Správný výsledek:

o =  33,31
S =  69,25

Řešení:

AC=12 CD=8  sinΘ=BCAC cosΘ=BCBD  cos2Θ+CDACcosΘ1=0 x2+CDACx1=0  x2+0.667x1=0  a=1;b=0.667;c=1 D=b24ac=0.667241(1)=4.4444444444 D>0  x1,2=b±D2a=0.67±4.442 x1,2=0.33333333±1.0540925533895 x1=0.72075922005613 x2=1.3874258867228   Soucinovy tvar rovnice:  (x0.72075922005613)(x+1.3874258867228)=0   Θ=435258"  BC=ACsinΘ=8.3182260804446 AB=ACcosΘ=8.6491106406735 AD=BC2+(ABCD)2=8.3435142325775  o=AB+BC+CD+AD=33.31|AC| = 12 \ \\ |CD| = 8 \ \\ \ \\ \sin \Theta = \dfrac{|BC|}{|AC|} \ \\ \cos \Theta = \dfrac{|BC|}{|BD|} \ \\ \ \\ \cos^2 \Theta + \dfrac{ |CD|}{|AC|}\cos \Theta - 1 =0 \ \\ x^2 + \dfrac{ |CD|}{|AC|}x - 1 =0 \ \\ \ \\ x^2 +0.667x -1 =0 \ \\ \ \\ a=1; b=0.667; c=-1 \ \\ D = b^2 - 4ac = 0.667^2 - 4\cdot 1 \cdot (-1) = 4.4444444444 \ \\ D>0 \ \\ \ \\ x_{1,2} = \dfrac{ -b \pm \sqrt{ D } }{ 2a } = \dfrac{ -0.67 \pm \sqrt{ 4.44 } }{ 2 } \ \\ x_{1,2} = -0.33333333 \pm 1.0540925533895 \ \\ x_{1} = 0.72075922005613 \ \\ x_{2} = -1.3874258867228 \ \\ \ \\ \text{ Soucinovy tvar rovnice: } \ \\ (x -0.72075922005613) (x +1.3874258867228) = 0 \ \\ \ \\ \ \\ \Theta = 43^\circ 52'58" \ \\ \ \\ |BC| = |AC| \sin \Theta = 8.3182260804446 \ \\ |AB| = |AC| \cos \Theta = 8.6491106406735 \ \\ |AD| = \sqrt{ |BC|^2 + (|AB|-|CD|)^2} = 8.3435142325775 \ \\ \ \\ o = |AB|+|BC|+|CD| + |AD| = 33.31
S=(AB+CD)BC2=69.25S = \dfrac{(|AB|+|CD|)\cdot |BC|}{2}= 69.25



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby, které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám prosím svůj komentář ku úloze - postřehy, myšlenku nebo se něco zeptejte. Děkujeme že si takto pomáháme navzájem - žáci, studenti, učitelé, rodiče a tvůrci příkladů.

Zobrazuji 2 komentáře:
#
Žák
mám za to, že cos(x)2+sin(x)2=1. Vy ale počítáte s tím, že 2cos(x)2=1. A to je asi blb2, ne?

#
Žák
Za předpokladu, že jsou zadány délky uhlopříček |AC| = 12 cm a |BD| = 8 cm je plocha příslušného pravoúhlého lichoběžníka 54 cm2 a obvod cca 30,5 cm.

avatar









Tipy na související online kalkulačky
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?
Potřebujete pomoci sčítat, zkrátít či vynásobit zlomky? Zkuste naši zlomkovou kalkulačku.
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • Hranoly
    hranol4b Otázka č.1: Hranol má rozměry a = 2,5cm, b = 100mm, c = 12cm. Jaký je jeho objem? a) 3000 cm2 b) 300 cm2 c) 3000 cm3 d) 300 cm3 Otázka č.2: Podstava hranolu je kosočtverec s délkou strany 30 cm a výškou 27 cm. Výška hranolu je 5dm. Jaký je objem hranolu?
  • Zemina
    vykop Vypočítej, kolik metrů krychlových zeminy je potřeba odvézt z výkopu tvaru rovnoramenného lichoběžníku, horní šířka je 3 metry, spodní šířka je 1,8 m hloubka výkopu je 1m a délka 20 m.
  • Plášť hexa-jehlanu
    hexa_pyramid Určete obsah pláště pravidelného šestibokého jehlanu, vite-li že jeho podstavná hrana má délku 5cm a výška tohoto jehlanu je 10cm.
  • Je dán 8
    kuzel3 Je dán rotační kužel: r = 6,8 cm s = 14,4 cm vypočítejte obsah plášte S2, výsku h a objem V.
  • Šestiboký jehlan
    hexa_pyramid Vypočítejte objem pravidelného šestibokého jehlanu, jehož podstavná hrana má délku 12cm a boční hranu 20cm.
  • Podstava 4b hranolu
    hranol4b_1 Pravidelný čtyřboký hranol má povrch 250 dm2, jeho plášť má obsah 200 dm2. Vypočítejte jeho podstavnou hranu.
  • Je dána 5
    squares_cut_circles Je dána kružnice, do které je vepsán čtverec. Menší čtverec je vepsán do kruhové úseče tvořené stranou čtverce a obloukem dané kružnice. Jaký je poměr ploch velkého a malého čtverce?
  • Deska
    obrus Deska kruhového stolu má obsah 2,01 m2. Vypočítej průměr kruhového ubrusu, má-li přesahovat okraj stolu o 25 cm.
  • Objem 20
    kuzel2 Objem kužele je 9,42 cm3 a jeho průměr podstavy je 3 cm. Vypočtěte 1/výšku kužele 2/stranu kužele 3/povrch kužele
  • Plechovka,
    plech Plechovka, vyska 9cm, r=8cm. Kolik plechu je potreba na jeji vyrobu?
  • Nálevka
    kuzel_rs Nálevka má tvar rovnostranného kužele. Vypočítejte obsah plochy smáčené vodou v případě, že do nálevky nalijete 3 litry vody.
  • Silo tvaru
    silo Silo tvaru válce má průměr 4 m a výšku 7 m. Na kolik m2 je třeba nakoupit barvu k natření proti korozi (silo natíráme pouze z venkovní strany).
  • Kašna
    fontana Kamenná kašna, která má tvar válce s průměrem 3 m, je hluboká 70 cm. Kolik m2 kamene je smáčeno vodou?
  • Sloup 8
    cylinder Sloup na plakáty ve tvaru válce je vysoký 2,3 m a jeho průměr je 1,2 m. Jaký je obsah plochy, na kterou je možno lepit plakáty?
  • Silniční válec 3
    valec_cesta Silniční válec má průměr 0,81 m a šířku 154 cm. Kolik m2 cesty urovná, když se otočí celkem 37-krát?
  • Válcovitá
    valec2 Válcovitá nádoba o průměru 1,8 m obsahuje 2 000 litrů vody. Do jaké výšky sahá voda?
  • Vypočítej 60
    valec_1 Vypočítej povrch papírového válce (bez víka) s rozměry : poloměr dna : 7 cm, výška válce : 22 cm.