Otec a syn

Otec je 6krát starší než jeho syn. Po čtyřech letech bude otec pouze čtyřikrát starší. Jaké jsou jejich stáří?

Výsledek

f =  36
s =  6

Řešení:


f=6s
f+4 = 4(s+4)

f-6s = 0
f-4s = 12

f = 36
s = 6

Vypočtené naším kalkulátorem soustavy lineárních rovnic.







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto slovní úlohy jsou potřebné tyto znalosti z matematiky:

Máte soustavu rovnic a hledáte kalkulačku soustavy lineárních rovnic?

Další podobné příklady:

  1. Tři dílny
    workers_24 Ve třech dílnách závodu pracuje 2743 lidí. Ve druhé dílně pracuje o 140 lidí více než v první a ve třetí dílně 4,2-krát více než v druhé. Kolik lidí pracuje v každé dílně?
  2. Průměrný věk
    ages Průměrný věk sourozenců Standy, Radka a Patricie je 10 let. Standa je dvakrát starší než Radek a Patricie je o dva roky mladší než Radek. Určete věk jednotlivých sourozenců.
  3. Vlčkovi
    4kids Vlčkovi mají 4 děti. Ondra je o 3 roky starší než Matěj a Kuba o 5 let starší než nejmladší Jana. Víme, že je jim dohromady 30 let a před 3 lety jim bylo dohromady 19 let. Určete, jak jsou děti staré.
  4. Cyrilovi
    clocks2_22 Cyrilovi bylo před 3mi lety čtyřikrát méně než Daliborovi. Za kolik let bude Cyrilovi 2x méně, pokud je teď 3x mladší?
  5. Branky
    hokej_2 čtyři hokejová mužstva nastřílela v turnaji 337 branek. druhé družstvo dalo o 16 branek méně než první , třetí o 17 méně než druhé a čtvrté o 30 branek méně než druhé . Kolik branek dalo každé mužstvo?
  6. Koruny
    penize_1.JPG Žáci čtyř ročníků uspořili dohromady n=45000 korun. Z toho první ročník uspořil jednu třetinu, druhý jednu třetinu zbytku, třetí dvě pětiny dalšího zbytku a čtvrtý zbývající část. Kolik korun uspořil každý ročník ?
  7. Léta jdou
    family Carla má 5 let a Jim je o 13 let mladší než Petr. Před rokem byl věk Petr dvakrát vyšší než součet věků Carla a Jima. Najděte současný věk každého z nich.
  8. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?
  9. Třída
    skola_24 V 7. Třídě je o 2 žáky více než v 8. Třídě. Kdyby se počet žáků 7. Třídy zvýšil o 7 a počet žáků 8. Třídy zvýšil o třetinu původního počtu, byl by v obou třídách stejný počet žáků. Kolik žáků je 7. A v 8. Třídě?
  10. Prací prášky
    rex 200 krabic pracích prášků bylo v obchodě narovnáno ve 3 řadách. V první řadě bylo o 13 krabic víc než ve druhé, ve druhé o jednu pětinu víc než ve třetí řadě. Kolik krabic bylo v jednotlivých řadách?
  11. Nohy
    rak Rak má 5 párů nohou. Hmyz má 6 nohou. 60 tvorů má celkem 500 nohou. Okolik více je raků než hmyzu?
  12. Eliminační metoda
    rovnice_1 Řešte soustavu lineárních rovnic eliminační metodou: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  13. Soustava 13
    eq2_8 Řešte soustavu rovnic: 3x-(y+2)/2 =9 (x+2)/5-2y =5
  14. V zoo
    tava V zoo je 10 velbloudů mezi kterými jsou velbloudi dvouhrbí (drabaři) a velbloudi jednohrbí (dromedáři). Celkem mají 14 hrbů. Urči počet drabařů v ZOO.
  15. Akcionáři a.s.
    vote Na shromáždění akcionářů bylo přítomno 360 osob s hlasovacím právem. Pro určitý návrh bylo o 104 hlasů více než proti. Kolik akcionářů bylo pro návrh a kolik proti?
  16. Soustava rovnic
    linsys Řešte následující soustavu rovnic o třech neznámých 3x+2y+3z=110 5x-y-4z=0 2x-3y+z=0
  17. Řešte
    linear_eq_2 Řešte soustavu dvou rovnic o dvou neznámých: 1.5x+1.2y=0.6 0.8x-0.2y=2