Eight blocks

Dana had the task to save the eight blocks of these rules:

1. Between two red cubes must be a different color.
2. Between two blue must be two different colors.
3. Between two green must be three different colors.
4. Between two yellow blocks must be four different colors.

In what order Dana order imposed blocks if the first block cannot be yellow? How many are solutions?

Result

n =  16

Solution:

1 BGYBRGRY
2 BGYBRGRY
3 BGYBRGRY
4 BGYBRGRY
5 BGYBRGRY
6 BGYBRGRY
7 BGYBRGRY
8 BGYBRGRY
9 BGYBRGRY
10 BGYBRGRY
11 BGYBRGRY
12 BGYBRGRY
13 BGYBRGRY
14 BGYBRGRY
15 BGYBRGRY
16 BGYBRGRY







Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Would you like to compute count of combinations? See also our variations calculator. See also our permutations calculator.

Next similar examples:

  1. Octahedron - sum
    8sten On each wall of a regular octahedron is written one of the numbers 1, 2, 3, 4, 5, 6, 7 and 8, wherein on different sides are different numbers. For each wall John make the sum of the numbers written of three adjacent walls. Thus got eight sums, which also.
  2. MO - triangles
    metal On the AB and AC sides of the triangle ABC lies successive points E and F, on segment EF lie point D. The EF and BC lines are parallel and is true this ratio FD:DE = AE:EB = 2:1. The area of ABC triangle is 27 hectares and line segments EF, AD, and DB se
  3. Square grid
    sit Square grid consists of a square with sides of length 1 cm. Draw in it at least three different patterns such that each had a content of 6 cm2 and circumference 12 cm and that their sides is in square grid.
  4. Bicycles
    cyclist_11 You're the owner of the transport 's learning playground. Buy bicycles of two colors but you've got to spend accurately 120000 Kč. Blue bike costs 3600Kč and red bicycle 3200Kč.
  5. Three friends
    Veverka Three friends squirrels together went to collect hazelnuts. Zrzecka he found more than twice Pizizubka and Ouska even three times more than Pizizubka. On the way home they talked while eating and was cracking her nuts. Pizizubka eaten half of all nuts whi
  6. Z9-I-4
    numbers_30 Kate thought a five-digit integer. She wrote the sum of this number and its half at the first line to the workbook. On the second line wrote a total of this number and its one fifth. On the third row she wrote a sum of this number and its one nines. Fi
  7. Tunnels
    Mysky Mice had built an underground house consisting of chambers and tunnels: • each tunnel leading from the chamber to the chamber (none is blind) • from each chamber lead just three tunnels into three distinct chambers, • from each chamber mice can get to any
  8. Christmas Day
    stedryd In leap years was 53 Sundays. On what day of the week fell to Christmas Day?
  9. Katy MO
    reporter_saved6 Kate draw triangle ABC. Middle of AB have mark as X and the center of the side AC as Y. On the side BC wants to find the point Z such that the content area of a 4gon AXZY was greatest. What part of the triangle ABC can maximally occupy 4-gon AXZY?
  10. Meadow
    ovce-miestami-baran On the meadow grazing horses, cows and sheep, together less than 200. If cows were 45 times more, horses 60 times more and sheep 35 times more than there are now, their numbers would equall. How many horses, cows and sheep are on the meadow together?
  11. Trapezoid MO-5-Z8
    lichobeznik_mo_z8 ABCD is a trapezoid that lime segment CE divided into a triangle and parallelogram as shown. Point F is the midpoint of CE, DF line passes through the center of the segment BE and the area of the triangle CDE is 3 cm2. Determine the area of the trapezoid A
  12. Pet store
    fish In a pet store, they are selling out the fish from one aquarium. Ondra wanted half of all fish, but they don't wish cut by hal fany fish he got one more than demanded. Matthew wished the remaining half of the fish, but as Andrew got half the fish more th
  13. MO SK/CZ Z9–I–3
    ball_floating_water John had the ball that rolled into the pool and it swam in the water. Its highest point was 2 cm above the surface. Diameter of circle that marked the water level on the surface of the ball was 8 cm. Determine the diameter of John ball.
  14. Internal angles
    mo-klm The ABCD is an isosceles trapezoid, which holds: |AB| = 2 |BC| = 2 |CD| = 2 |DA|: On its side BC is a K point such that |BK| = 2 |KC|, on its side CD is the point L such that |CL| = 2 |LD|, and on its side DA the point M is such that | DM | = 2 |MA|. Dete
  15. Pentagon
    5gon_1 Within a regular pentagon ABCDE point P is such that the triangle is equilateral ABP. How big is the angle BCP? Make a sketch.
  16. Hexagon - MO
    6uholnik_nepravidelny The picture shows the ABCD square, the EFGD square and the HIJD rectangle. Points J and G lie on the side CD and is true |DJ|
  17. Isosceles - isosceles
    triangles_12 It is given a triangle ABC with sides /AB/ = 3 cm /BC/ = 10 cm, and the angle ABC = 120°. Draw all points X such that true that BCX triangle is an isosceles and triangle ABX is isosceles with the base AB.