# Three vectors

The three forces whose amplitudes are in ratio 9:10:17 act in the plane at one point so that they are in balance. Determine the angles of the each two forces.

**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 0 comments:**

**Be the first to comment!**

#### To solve this example are needed these knowledge from mathematics:

## Next similar examples:

- Theorem prove

We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started? - Vectors

For vector w is true: w = 2u-5v. Determine coordinates of vector w if u=(3, -1), v=(12, -10) - Linear independence

Determine if vectors u=(-4; -5) and v=(20; 25) are linear Linear dependent. - Vector - basic operations

There are given points A [-9; -2] B [2; 16] C [16; -2] and D [12; 18] a. Determine the coordinates of the vectors u=AB v=CD s=DB b. Calculate the sum of the vectors u + v c. Calculate difference of vectors u-v d. Determine the coordinates of the vector w. - Vector sum

The magnitude of the vector u is 12 and the magnitude of the vector v is 8. Angle between vectors is 61°. What is the magnitude of the vector u + v? - Scalar dot product

Calculate u.v if |u| = 5, |v| = 2 and when angle between the vectors u, v is: a) 60° b) 45° c) 120° - Bearing

A plane flew 50 km on a bearing 63°20' and the flew on a bearing 153°20' for 140km. Find the distance between the starting point and the ending point. - Bearing - navigation

A ship travels 84 km on a bearing of 17°, and then travels on a bearing of 107° for 135 km. Find the distance of the end of the trip from the starting point, to the nearest kilometer. - Vector

Determine coordinates of the vector u=CD if C[19;-7], D[-16,-5]. - De Moivre's formula

There are two distinct complex numbers z such that z^{3}is equal to 1 and z is not equal 1. Calculate the sum of these two numbers. - Angles

In the triangle ABC, the ratio of angles is: a:b = 4: 5. The angle c is 36°. How big are the angles a, b? - Median

The median of the triangle LMN is away from vertex N 84 cm. Calculate the length of the median, which start at N. - Isosceles triangle

What are the angles of an isosceles triangle ABC if its base is long a=5 m and has an arm b=4 m. - Scalene triangle

Solve the triangle: A = 50°, b = 13, c = 6 - Side c

In △ABC a=2, b=4 and ∠C=100°. Calculate length of the side c. - Angles by cosine law

Calculate the size of the angles of the triangle ABC, if it is given by: a = 3 cm; b = 5 cm; c = 7 cm (use the sine and cosine theorem). - Greatest angle

Calculate the greatest triangle angle with sides 197, 208, 299.