Candy - MO

Gretel deploys to the vertex of a regular octagon different numbers from one to eight candy. Peter can then choose which three piles of candy give Gretel others retain. The only requirement is that the three piles lie at the vertices of an isosceles triangle. Gretel wants to distribute sweets so that they get as much as possible, whether Peter trio vertices chosen anyhow. How many such Gretel guaranteed profits?

b) Do the same task even for regular 9-gon to deploy culminating Gretel 1-9 sweets. (equilateral triangles is also isosceles triangles well.)

Result

a =  21
b =  27

Solution:

Solution in text a =
Solution in text b =







Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




To solve this example are needed these knowledge from mathematics:

See also our trigonometric triangle calculator.

Next similar examples:

  1. 30-gon
    30gon At a regular 30-gon the radius of the inscribed circle is 15cm. Find the "a" side size, circle radius "R", circumference, and content area.
  2. Quadrilateral 2
    quadrilateral Show that the quadrilateral with vertices P1(0,1), P2(4,2) P3(3,6) P4(-5,4) has two right triangles.
  3. Recursion squares
    squares_reccurent In the square ABCD is inscribed a square so that its vertices lie at the centers of the sides of the square ABCD.The procedure of inscribing square is repeated this way. Side length of square ABCD is a = 42 cm. Calculate: a) the sum of perimeters of all
  4. Circle section
    circle_segment Equilateral triangle with side 34 is inscribed circle section whose center is in one of the vertices of the triangle and the arc touches the opposite side. Calculate: a) the length of the arc b) the ratio betewwn the circumference to the circle sector.
  5. Garden
    garden_1 Area of square garden is 6/4 of triangle garden with sides 56 m, 35 m and 35 m. How many meters of fencing need to fence a square garden?
  6. Rectangle
    rectangle_inscribed_circle The rectangle is 11 cm long and 45 cm wide. Determine the radius of the circle circumscribing rectangle.
  7. Rhombus 2
    koso Calculate the area of rhombus which has a height v=48 mm and shorter diagonal u = 60 mm long.
  8. Isosceles
    rr_lichobeznik_1 Isosceles trapezium ABCD ABC = 12 angle ABC = 40 ° b=6. Calculate the circumference and area.
  9. Track arc
    krizenie Two straight tracks is in an angle 74°. They will join with circular arc with radius r=1127 m. How long will be arc connecting these lines (L)? How far is the center point of arc from track crossings (x)?
  10. Circular pool
    arc_open The base of pool is circle with a radius r = 10 m excluding circular segment that determines chord length 10 meters. Pool depth is h = 2m. How many hectoliters of water can fit into the pool?
  11. Rhombus
    rhomus_circle It is given a rhombus of side length a = 29 cm. Touch points of inscribed circle divided his sides into sections a1 = 14 cm and a2 = 15 cm. Calculate the radius r of the circle and the length of the diagonals of the rhombus.
  12. Trapezoid MO
    right_trapezium The rectangular trapezoid ABCD with right angle at point B, |AC| = 12, |CD| = 8, diagonals are perpendicular to each other. Calculate the perimeter and area of ​​the trapezoid.
  13. Trapezoid MO-5-Z8
    lichobeznik_mo_z8 ABCD is a trapezoid that lime segment CE divided into a triangle and parallelogram as shown. Point F is the midpoint of CE, DF line passes through the center of the segment BE and the area of the triangle CDE is 3 cm2. Determine the area of the trapezoid A
  14. Rectangle
    diagonal In rectangle with sides 3 and 10 mark the diagonal. What is the probability that a randomly selected point within the rectangle is closer to the diagonal than to any side of the rectangle?
  15. Triangle SAS
    triangle_iron Calculate area and perimeter of the triangle, if the two sides are 51 cm and 110 cm long and angle them clamped is 130°.
  16. Rhombus
    rhombus Calculate the perimeter and area of ​​rhombus whose diagonals are 2 cm and 6 cm long.
  17. Parallelogram
    paralleogram Calculate area of the parallelogram ABCD as shown if |AB| = 19 cm, |BC| = 18 cm and angle BAD = 90°