# Pool

If water flows into the pool by two inlets, fill the whole for 8 hours. The first inlet filled pool 6 hour longer than second. How long pool take to fill with two inlets separately?

**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 3 comments:**

**Math student**

1/t1+1/(t1-10)=1/18

multiply each term by18(t1)(t1-10)

that results in

18(t1-10)+18t1=t1(t1)(t1)-10t1

using the quadratic formula results in t1=-49.6 and 3.63

ubless i made a mistake, your calculations need reexamination!!! Correct me, please.

multiply each term by18(t1)(t1-10)

that results in

18(t1-10)+18t1=t1(t1)(t1)-10t1

using the quadratic formula results in t1=-49.6 and 3.63

ubless i made a mistake, your calculations need reexamination!!! Correct me, please.

**Dr Math**

right side of equation is wrong - should be t1*(t1-10) = t1

^{2}- 10*t1 now t1^{3}-10t1**Math student**

the problems seems to have changed - - - t2 is now equal t1-6

therefore 1/t1+1/(t1-6)=1/18

multiplying each term by18(t1)(t1-6) ==== 18(t1-6)+18t1=t1(t1-6), simplifying further 18t1-108+18t1=t1

or 0=t1

graphing y=18(t1-6)+18t1-t1(t1-6) results in t1=39.25 hours and t2=39.25-6=33.25 hours (same as your NEW answer!!!!

therefore 1/t1+1/(t1-6)=1/18

multiplying each term by18(t1)(t1-6) ==== 18(t1-6)+18t1=t1(t1-6), simplifying further 18t1-108+18t1=t1

^{2}-6t1or 0=t1

^{2}-6t1-18t1+108graphing y=18(t1-6)+18t1-t1(t1-6) results in t1=39.25 hours and t2=39.25-6=33.25 hours (same as your NEW answer!!!!

#### To solve this example are needed these knowledge from mathematics:

## Next similar examples:

- Logic

A man can drink a barrel of water for 26 days, woman for 48 days. How many days will a barrel last between them? - Adding percentages

55%+36%+88%+71%+100=63% what is whole (X)? Percents can be added directly together if they are taken from the same whole, which means they have the same base amount. .. . You would add the two percentages to find the total amount. - Two cars

Two cars started against each other at the same time to journey long 293 km. First car went 41 km/h and second 41 km/h. What distance will be between this cars 20 minutes before meet? - Car repair

John bought a car for a certain sum of money. He spent 10% of the cost to repairs and sold the car for a profit of Rs. 11000. How much did he spend on repairs if he made a profit of 20%? - A rectangular patio

A rectangular patio measures 20 ft by 30 ft. By adding x feet to the width and x feet to the length, the area is doubled. Find the new dimensions of the patio. - Two cubes

The surfaces of two cubes, one of which has an edge of 22 cm longer than the second are differ by 19272 cm^{2}. Calculate the edge length of both cubes. - A photograph

A photograph will stick to a white square letter with a x cm length. The photo is 3/4 x cm long and 20 cm wide than the width of the paper. The surface of the remaining paper surrounding the photograph is 990 cm^{2}. Find the size of paper and photo. - RT sides

Find the sides of a rectangular triangle if legs a + b = 17cm and the radius of the written circle ρ = 2cm. - Trapezoid MO

The rectangular trapezoid ABCD with right angle at point B, |AC| = 12, |CD| = 8, diagonals are perpendicular to each other. Calculate the perimeter and area of the trapezoid. - Bonus

Gross wage was 527 EUR including 16% bonus. How many EUR were bonuses? - Beer

After three 10° beers consumed in a short time there are 5.6 g of alcohol in 6 kg adult human blood. How much is it per mille? - Clock

How many times a day hands on a clock overlap? - Server

Calculate how many average minutes a year is the web server is unavailable, the availability is 99.99%. - River

From the observatory 11 m high and 24 m from the river bank, river width appears in the visual angle φ = 13°. Calculate width of the river. - Right triangle Alef

The obvod of a right triangle is 84 cm, the hypotenuse is 37 cm long. Determine the lengths of the legs. - Proof PT

Can you easy prove Pythagoras theorem using Euclidean theorems? If so, do it. - Observer

The observer sees straight fence 100 m long in 30° view angle. From one end of the fence is 153 m. How far is it from the another end of the fence?