# Endless lego set

The endless lego set contains only 6, 9, 20 kilograms blocks that can no longer be polished or broken. The workers took them to the gym and immediately started building different buildings. And of course, they wrote down how much the building weighed. They noticed that a 7 kg structure could not build them. Others do. Finally, they decided to find out from what least weight they already know, using 6, 9 and 20 kilograms, to build each building. What is the smallest weight of the building from which all the heavier buildings can be built?

Result

m =  44 kg

#### Solution:

Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

#### To solve this example are needed these knowledge from mathematics:

Do you solve Diofant problems and looking for a calculator of Diofant integer equations?

## Next similar examples:

In six baskets, the seller has fruit. In individual baskets, there are only apples or just pears with the following number of fruits: 5,6,12,14,23 and 29. "If I sell this basket," the salesman thinks, "then I will have just as many apples as a pear." Which
2. Toy cars
Pavel has a collection of toy cars. He wanted to regroup them. But in the division of three, four, six, and eight, he was always one left. Only when he formed groups of seven, he divided everyone. How many toy cars have in the collection?
3. Sum of two primes
Christian Goldbach, a mathematician, found out that every even number greater than 2 can be expressed as a sum of two prime numbers. Write or express 2018 as a sum of two prime numbers.
4. Unknown number
Unknown number is divisible by exactly three different primes. When we compare these primes in ascending order, the following applies: • Difference first and second prime number is half the difference between the third and second prime numbers. • The produ
5. Theorem prove
We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
6. Diofant equation
250x + 120y = 5640
7. Sheep
Shepherd tending the sheep. Tourists asked him how much they have. The shepherd said, "there are fewer than 500. If I them lined up in 4-row 3 remain. If in 5-row 4 remain. If in 6-row 5 remain. But I can form 7-row." How many sheep have herdsman?
8. Legs
In the room are four-legged chairs, three-legged stool, and all are sitted with (one) people. I counted all the leg room and there were a total of 39. How many are there chairs, stool and people?
9. Hexagon = 8 parts
Divide the regular hexagon into eight equal parts.
10. Divisors
The sum of all divisors unknown odd number is 2112. Determine sum of all divisors of number which is twice of unknown numbers.
11. Gauss
Help little C.F. Gauss sum all the integers from 1 to 400.
12. One hundred stamps
A hundred letter stamps cost a hundred crowns. Its costs are four levels - twenty tenths , one crown, two-crown and five-crown. How many are each type of stamps? How many does the problem have solutions?
13. Candies
If Alena give Lenka 3 candy will still have 1 more candy. If Lenka give Alena 1 candy Alena will hame twice more than Lenka. How many candies have each of them?
14. Numbers
Write smallest three-digit number, which in division 5 and 7 gives the rest 2.
15. Antennas
If you give me two antennas will be same. If you give me again your two antenna I have a 5× so many than you. How many antennas have both mans?
16. Three-digit
How many three-digit natural numbers do not have the number 7?
17. Potatoes bags
I have three bags with 21 kg potatoes. The first bag is 5.5 kg more than in the second bag and the third is 0.5 kg more than in the second bag. Determine how many kgs of potatoes is in each bag.